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PREFACE

This volume represents the second part of the final
report for NASA Grant NSG-1414, Suppl. 9. The first part,
designated Part I, was published in August 1987 and focused
on the stability analysis of large space structure control
systems with delayed input and the minimum time attitude
slewing maneuver of a rigid spacecraft system with numerical
exampleé based on the rigidized model of the Spacecraft Control
Laboratory Experiment (SCOLE) orbiting configuration.

This volume, designated as Part II, is based on the re-
cently completed Ph.D. dissertation by Cheick Modibo Diarra,
entitled, "On the Dynamics and Control of the Spacecraft Control
Laboratory Experiment (SCOLE) Class of Offset Flexible Systems."
First the open-loop dynamics of the orbiting SCOLE syétem are:
modeled to include the flexibility of the mast which connects
the reflector to the Shuttle. The stability of system motion
with respect to the nominal equilibrium during station keeping
is considered for special cases, both for the 2-D and 3-D
motion models. The control law synthesis is addressed for both
small disturbances during station keeping operations and also
during large amplitude preliminary slew maneuvers about the

Shuttle's roll, pitch, and yaw axes, respectively.
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Control law gains for both cases are based on linear quadratic
regulator techniques. For the case of the rapid slew maneuvers
the results presented here can form a basis of comparison wifh
other results presented in Part I of this repor. and based on

the application of two point boundary value problem techniques.
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ABSTRACT

A. mathematical model is developed to predict the
dynamics of the proposed orbiting Spacecraft Control
Laboratory Experiment during the station“koeping-phase.
The Shuttle as well as the reflector are assumed to be
rigid, the mast is flexible and is assumed to undergo
elastic_displacements very small as compared with its
length. The equations of motion are derived using a
Newton-Euler formﬁlation. The modei includes the effects
of gravity, flexibility, and orbital dynamics. The
control is assumed to be provided to the system through
the Shuttle's three torquers, and through six actuators
locatéd by pairs at two points on the mast and at the ma;s
center of the reflector. At each of the locations, an
actuator acts parallel to the roll axis while the other
one acts ﬁarallel to the pitch axis. The modal shape
functions are derived using the fourth order beam
equation. The generic mode equations aie derived t§
account for the effects of the control forces on the modaly
shapes and frequencies. The equations are linearized
about a nominal equilibrium position. When tha interface

point between the mast and the reflector is assumed to
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coincide with the mass center of the reflector, it is seen
that the pitch equation is decoupled 1rum the roll and yaw
motions. When the'interfaée point is offset along the
roll axis the pitch equgtion is still decoupled from the
two other equations (roll and vyaw). It is seen that the
open loop system is unstable for both—éases due to the
(gravitationally) unfavorable moment .of ineertiﬁ
distribution. When, in addition to the roll axis offset,
a pitch axis offset is introduced into the system, the
equations describing the roll, pitch, and yaw motions are
;een to be all coupled together. It is further seen that,
in the presence‘of gravity gradient torques in the system
dynamics, the system assumes a new equilibrium position
about which the equations will have to be linearized. The
linear regulator theory is used to derive control laws for
both the linear model of the rigidized SCOLE as well as
that of the actual SCOLE including the first four flexible
modes. The control strategy previously derived for the
linear model of the rigidized SCOLE is applied to the
non-linear model of the same coafiguration of the systgm
and preliiinafy single axis slewing maneuvers conducted.
The results 6btained confirm the applicability of the
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intuitive and appealing two-stage control strategy which
would slew the SCOLE system. as if rigid to its desired
position and then corcentrate on damping out the residual

flexible motions.
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CHAPTER ONE
INTRODUCTION

The problem of maneuvering a flexible spacecraft
wvhile suppressing the induced vibrations is becoming
increasingly important. NASA is involved in studies which
are concerned with the control of flexible bodies carried
by a Shuttle in an Earth orbit. Similar experiments are
being conducted in Earth~based laboratories. It is then
desirable to derive a formulation which can accommodate
both types of experiments.

NASA is currently involved in at least two
experimental programs to test techniques derived for'
aétive control of flexible space structures.

In several versions of a recent paper, SCOLE(I)
(Spacecraft Control Laboratory Experiment), Lawrence W.
Taylor, Jr. and A.V. Balakrishnan have described the first
which is ground based. It is a laboratory experiment
based on a model of the Shuttle connected to a flexible
beam with a reflecting griliage mounted at the end of the
beam (Figure I.1l). As a part of the design challehge,
the authors stressed “he need to directlv compare

competing control design techniques and discussed the



2
feasibiiity of such a direct comparison. Concern would be
given to modeling order reduction, fault management,
stability, and dynamic systems. Ground-based
experimentation has its limitations becauée it is almost
impossible to to duplicate .the space environment in a
laboratory. The second experimental program is known as’
Cbntrol of Flexible Spacecraft (COFS)(Z) and consists of
e;péiiments designed to control flexible bodies carried by
a Shuttle in an Earth orbit. Because of the cost and
risks involved in testing control techniques in space,

- COFS includes laboratory simulations of similar
experiments which will precede the space test, Therefore,
in assuring éhe success of both SCOLE and COFS,
mathematical modeling and computer simulation are
required..

To accurately model and simulate flexible spacecraft,
~ one needs a thorough knowledge of its structural behavior.
In a paper(s), subsequent to the design challenge, ‘the
modal shapes and frequencies for the SCOLE system were
derived. In the anaiysis of the mathematical model of
reference 3, the SCOLE system is assumed to be described
by partial differential equations_in which the variables

separate. The assumptions in that study did not create a




noticeable difference with the results previously
derived(l). Based on the equations describing the motion
of the SCOLE system brovided in reference 1, the
expression for the reflector line-of-sight (LOS) error was
expanded analytically an&—studteﬂ—tarefully(a).
Analytical results showed that the SCOLE's LOS error is
independent of the Euler yaw attitude angle so, only two,
instead;bf, ériginally threg{mgngular parameters were
needed to be concerned with in designing the pointing slew
maneuvers. .
Numerical simulation(%) test results indicated, then,
that the single axis bang-bang or bang-pause-bgng slew
maneuvers work fairly well for pointing.fhe LOSvof SCOLE.
'~ The best pointing accuracy and shortest slew time were
attained when using the Shuttle torquers and actuators
placed on the reflector while imposing a 5 degree/second
slew rate limit on the design.

_ Recently, a paper(s) concerned with the derivation of
the equations of motion of the SCOLE class of flexible
structures was published. The equations are supposed to
describe a manuevering flexible spacecraft both in orbit
and ir an Earth based laboratory.(6). Tﬁe analysis is

based on a perturbation technique in which the large
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rigid-body motion are regarded as the unperturbed motion
of the spacecraft while the induced elastic motions and .
deviations from the nominal rigid motions are considered
as perturbations.' A maneuver force distribution ~n the
SCOLE éysten corresponding to the least amount of elastic
deformation is derived. The paper a.so highlights the
coupling between the rigid and flexible modes.

With.;he aforementioned papers as a background, the
present study commenced by first reviewing literature'
pertaining to Reference 1, together with texts and papers
which ﬁreat structural dynamics modeling and boundary
value problems(7).

Then, a mathematical model of the SCOLE sjstem.is
developed assumingvihat: the space Shuttle is a rigid
body; the reflector mast is a flexible beam type
appendage; and that the reflector is a rigid plate. The
mast shape functions and frequencies are obtained from the
fourth order flexural beam partial differential equation
with different boundary conditions assumed to be imposed
on both the Shuttle and reflector grillage ends. The

system is represented as a beam connected at both ends to

bodies with inertia.
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_Frequencies and modal shapes are derived for in-plane
" and out-of-plahe bending modes as well as for the shaft
torsion;l vibrational modes.

fhe equation describing the in-plane dynamics of the
system are developed based on an Eulerian formulation.
This equation is lineararized about a nominal potion wvhere
the Shuttle would have its velocity vector along the local
horizontal.

Also undertaken in this study is the‘modeling of the
three dimensional dynamics of the SCOLE configuration
based on the Eulerian techniques already employed, in the
development of the in-plane (2-D) open-loop dynamics. The
increased complexity of this three dimensional formulation
should be emphasized. ‘The techniques consist in isolating
an elemental mass of the system in its deformed state and
deriving its angular momentum taken at the mass center of
the Orbiter.

- The position vector extending from the origin of the
coordinate system to the elemental mass of the mast or the
reflector accountg for the elastic displacements. The
expressions for these displacemcnts are derived from the

mode shape functions generated during the three -



dimensional structural analysis of the system (see
Appendix A).

The equations obtained for the elemental masses of
the components of the system - r2 integrated over the mass
of the entire system to yield its angular momentum about
the mass center of the Orbiter. The derivative of the
system angular momentum with respect to time is equated
with the gravity gradient torques(s)“on the system about
the same point (see Appendix C). Such a vectorial
equation, when projected along the three axes of rotation,
yields the system rotational equations of motion. These
rotational equatiuus of motion are then linearized to
y;eld a model which provides the basis for the control law
synthesis developed iﬁ this study. But first, the
stability analysis is conducted in the three following
steps:

first, when the mast is assumed to be rigid and to be
connected to both end bodies, at their mass centers:

second, when the interface point between the mast and
the reflector is offset with respect to the reflector mass
center in the "x" direction while the mast is still

assumed rigid; and
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finally when the "y" offset is introduced into the
rigid SCOLE.configuration. The flexible model of the
SCOLE system, which includes the effects of the first four
flexible modes, is oLtained by substituting the
expressions for the acceleration of the modal amplitqdes,
obtained from the generic mode equations, iﬁto the
rotational equations of motion. These expressions take
into account the effects of the controllérs on the modal
shapes and frequencies of the sﬁructure.

The ORACLS(Q) package is used to derive control laws
for both the rigidized SCOLE (linearized model) and the
linearized model of SCOLE with a flexible mast.

The control law, based on the linear regulator
theory, derived for the linearized model of the rigidized
SCOLE is also used for large amplitude rigid motion
maneuvers. The non-linear equations describing the
dynamics of that model are derived from the more general
rotational equations of motion previously obtained. From
the numerical results obtained from the simulations of all
three models, conclusions are drawn regarding the modeling
technique nsed herein, and the control efforts versus
maneuver time of this srraﬁegy is compared with control

laws previously presented for consideration for their



implementation in the laboratory model of the SCOLE. Under
some additional assumptions, the equations describing the
dynamics of the SCOLE system can be modified and adapted'
to systems;with offsets proposed or currently under
development such as the Wrap-Rib anteuna(lo) in which the
attachment of the lower mast, to the rest of the system,
is offset and the tether connected plat;ti;}ikinetic
Isolation Tether Experiment) in which the location of the

interface point between the platform and the tether can

vary.



‘ Mast actuators

7 .
FIGURE I.l: DRAWING OF THE SCOLE CONFIGURATION



CHAPTER TWO
TWO DIMENSIONAL ANALYSIS OF THE SCOLE CONFIGURATION

In this chapter, the equation describing the in-plane
(rotational) dynamics of the SCOLE configuration (Figure
IT.1) is derived using the Eulerian moment equation.

The folllowing main assumptions are made in the

development:

a) the space Shuttle orbiter is assumed to be
rigid;

b) the mast, treated as a 130 ft long beam, is
rigidly connected to the Shuttle at G, mass
center of the orbiter, and to the.reflector at
01, the interface point.

c) the reflector is considered to be a flat and
‘rigid plate with its mass center at Gl;

d) the mast is assumed homogeneous and isotropic;

e) the elastic displacements are assumed small as
compared with the length of the mast.

£) the analysis here is performed by assuming that
the mast vibrates at only one of its flexible
modal frequencies but can be extended, within
the linear range, by superimposing the effects
of several modes.

II.1. Angular Momentum of the Shuttle with Respect to its

Center of Mass, G.

The center of mass of the Shuttle is considered to
@o.e in an orbit about a fixed point, the geocenter 0; its

angular momentum about its center of mass is given by .

A

10
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Hy,o = (5-0,0) I, 3 (II.1)

where % is the pitch rate, w, the angular velocity of the

0
orbit, ISZ the moment of inertia of the orbiter with
respect to an axis passing through G and perpendicular to

~the the orbit plane.

iII.z Angular Momentum of the Hast _With Respect to G, the
Orbiter Center of Mass.

Consider here an element of the mast located at point
P, with mass dm. The elemental angular momentum of such

an element is given by

->

- - . '
dHM/G = GP x d @P)h dm ‘ (I1.2)
where RO is the inertial frame centered at the geocenter,

0.
If one notes that

-

P =%, +T; (II1.3)
then, Equation (II.2) may be expanded according to:
EVC' ‘51ﬁﬁb::ﬁ%ﬁ)h' (I1.4)

dE |R is expressed using the relationship between the time
dt
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rate of a vector in an inertial (Ro) and rotating (Ri)

frames, i.e.

> -> > -+

The in-plane transverse elastic displacement vector,'E:
(assuming a single mode of vibration) (see Appendix A) is

found to be:
T = cos (wt+9) {A cos Bz+B sinBz+C coshBz+D sinhgz) iS (11.6)

‘After substitution of Equations (II.5) and (II.6) into
Equation (II.4) and integ;ation term by term, one can

develop:

- dyom (ForDxla g/ ¥FyH g gyl da

-> . -> -
~ {Tgx(a S/R xT))+q /RM*g /Rox?f)+qx(szs /ROer) }dm
where one assumes q . q and ¢ . q small as compared with
the other terms. , This can be explicitly rewritten as:
- L . ﬁ .
dBM/G - {e-l-eR-ab)z -z sin(ut+p){A cosfziB sirs8zC coshfat+ D sinhéz} ]j dn
with . dm=$ dz where § is the mass per unit leng~h of the"

mast, ES/R - (é-wo)J, the inertial angular velocity of
0
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the Shuttle, 1|RMthe velocity of the mast element as seen

from , RM' the frame moving with the mast, and

éR = d [3q(z,t)] zmel

dt 0z
- +
By/e = Sd Hy/e -
M
-> . 3 R
HM/G - (e-wo) o%.+ p sin (wt+d)f) j

where f = A (L sinBL + cosBL -1 )+B (L cosBL - singL)
B8 B2 BZ B BZ

+ C (L sinhfL - coshB8L + 1 ) + D (sinhfL -~ L coshBL)
g 2 2 2 . B
B 8 ) g

finally
-+ 2

yr ( (hGrpiL+ M oatabord) (D] (L)

II.3. Angular Momentum of the Rigid Reflector About G,

the Orbiter Mass Center

The reflector being rigid, its angular momentum can
be found at G by a simple application of the transfer

theorem (see Appendix B).
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-+ + - -
Bp/c=HR| o, *MRS0; * 4 (6G)) (1I.8)
: dt 0
> o o ~ . .
dt 9z z =],

éR-fwsin (wt+¢)B[~A 8inBL + B cosBL + C sinhBL + D coshBL]
Because of the assumed magnitude of the transverse elastic
displacément, it can be assumed that the length of the

mast remains constant. Subsequently,

-> -+ -

dGG = dGO + d (0,G
Tc e T il $:¢% I)IRO

This can be expanded using Equation (II.S5) with the

result
- i . a

- .- L : - .- e
G061 [LCo-ugrlp) 1 iy = X (5-uy + Sp) ky

where X is the distance between O1 and G1

->

GG1 - -LkM + XiM . -~

GG, x 4 (c'?;l)IR =[Ch+ by —ug) L2+ X2 48 p-0,) 1]
0
Hp = (B4 8g=00) (Tp,+4p (L24375) 137 (I1.9)
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II.4. Angular Momentum of the System About G.

-> z -+
Hsyst/G " w1 Hi/G : (II.10)

-

Hrgesam (G -up) Ig, + (6 -uy+bIML?/3
+ Musgin (Wt ) £/L
+ Gebpmug) (Tp +M[L243%]))] (II.11)

II.S. Rotational Equation of Motion of the Open Loop

System .

The rotational equation of motion is obtained by
equating the rate of change of the angular momentum of the
system about G with the external torques acting on the
system taken at G. Here‘it will be assumed tﬁat the only
external torque is due to.the gravity - gradient. (The
effect of control torques will be treated later in Chapter

Five).

i -
%: (Hyrgesg) |- 3 = N3 (II.12)
which can be explicitly written as:

ST, L2 /341, 4y (X4 12))4 8 (1, + MLE/3 4 Mp (X% L2))

-Mu? cos(ut+d) £/L = -3w§[11-13]e (II.13)
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where -3m€ 9(11-13) is the y component of the
gravity-gradient torque.acting on the system at its center

of mass, G (see Appendix C).

II.é6. Linearization of the Rotational Equations of
Motion

Let T, the dimensionless time, be equal to w, t.

0
T -d—e- - ie. - e' ' —&dz - 2 _d26 = wz "
hen dt Oy g7 wq s and dt2 ) W de 0
Equation (II.13) can be rewritten as
2, 2 o 2" 2 2 2
o 0P M3 IO 0y o XT3 0% 17)
-Mu? cos (uwt+4)£/L + 3w(2) (1,-I,)=0 (II.14)

Dividing Equation (II.14) by ML2 yields
" 2 2 Mp 2
) (ISZ/ML +1/3 + IRZ/ML +ﬁ—[(X/L) +1])

+0'p (Ip,/ML% + 1/3 + My [x/L)2 + 1))
M
- (w/wo)z cos (ut +¢) £/L3 + 30 (I}-1,)/ML%=0 (II.15)

Equation (II.15) can be recast as

"

C1 8 + C26 = f(t) (II.16)

if o /w0 = W, MR/M = 1 and X/L = A
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then, C; = Ig,/ML? + 1/3 + IRZ{ML2 su (02 4 1)
| 2
C, = 3(I, - I)/ML
£(x) = W cos (wr+e) (£/L3) - 8 (Tp,M2 +1/3 4 (1 + 22))

II.7. Stability Analysis of.the In-plane Motion

The stability analysis will be conducted in two
phases: first in a torque free situation and second in

the presence of gravity gradient torques.

II.7.A. Stability Anélzsis in the Torque-Free"
Configuration

In this case, Equation (II.16) becomes

Cc = f(<)

19

which is integrated twice to yield

8(1) = 1 [ cos (Wrdo) (E°) -eR(IRzM-2+ IBHQZ+1)HKOT+¥11
C
1l
The value of the constants KO and Kl are -derived from the

initial conditions (assuming 6= 0) i.e.
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|

?
when T = 0, 6(0) = 6o and 8 (0) = N

€y 8o = (=€ / L%) = 05(0) (Ipp/ML%+1/34 4 1241004 K,

or E; = C; 8g +0,(0) -(IRZ/ML2+1/3+ (21)) + (£
_and
c, o, = -—ak'(O)(IR£7ML2+;/3+ u(x2+1))+x0
or Ky = Cioy + oy (0) (Ip,/ML241/3 + (12 + 1)
finally,e(d= 1 (((£/ L®)(1-éos(We)) + C (6, + 6, )
C
1
+ (Ip,/ML341/3+ u (3 241)) ( BR'(O)T + 05(0)=65))
(II.17)

A numerical simulation of Equation (II.17) (Figures
IX.2 - II.6) for different values of the x offset and

frequencies has shown that:

a) the system oscillates about an equilibrium
position, in the absence of gravity-gradient
torques and disturbances, different from zero
due to the forcing effects of the flexibility
and the related coupling due to the offset.
(Figures II.2 and II.3) :

b) the amplitudes of the oscillations increase with
the offset (Figure II.4 and II.6), according to
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the coefficient of the sécond group of terms in
Equation (II.17).

c) finally, given an offset and an initial
disturbance, the amplitude and the frequency of’
oscillation about the equilibrium position
increase with the frequency of the mode of
vibration of the system (Figures II.4 and II.6)
Note that the coefficients in f (A-D) are
related to the modal amplitude functions.

II.7.B. Stability Analysis of the System in the Presence
of Gravity Gradient Torque

In the presence of the gravity-gradient torques, the
two dimensional motion of the SCOLE system is described by

Equation (II.16):

"

C1 0 + C2 6 = f (1)

In the absence of flexibility, .-f (<)=0, this equation

reduces to

”

C,e + C

1 -0

26
Since C, = 3 (I,-I,)/ML? is negative for the SCOLE

configuration, the solution, (1), for this case is

unstable. The case will be reconsidered in chapter IV

where the three dimensional dynamics of th= rigidized

SCOLE is analyzed. B



Here, Equation (II.16) is numerically integrated ard
the motion simulated for two different values of the
offset (X= 18.75 ft and X= 37.5 ft): Figures II.7, II.8,
and II.9. | .
| In addition to the tendencies depicted earlier for
the case of the torque free configuration, it is now seen
that the SCOLE system, with the presence of
gravity;gradient torques in its dynamics, is unstable.
This is due to the inertia distribution of the system in

the configuration considered here.
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CHAPTER THRE.Z

THREE DIMENSIONAL EQUATIONS OF MOTZON: THE ACTUAL SCOLE
CONFIGURATION

In this chapter, the three dimensional formulation of
the SCOLE dynamics is developed based on a Newton -
Eulerian formulation. The Shuttle and the reflector are
assumed to be rigid bodies and the mast is modelled as a
connecting flexible beam.

The expressions for the general displacement (See
"Appendix A) of an elemental mass on the mast are derived
f:om the three dimensional modg shape functions consistent
with the boundary conditions on the mass. . The three
dimensional rotational eqﬁations are obtained by ﬁaking
the moment of all the external forces acting on each
elemental mass, at some arbitrary point, and equating it
with the moment, about the same point, of the inertial
forces acting on the element.

These equations must then be integrated over the
entire system and then projected on the three axes of
rotation in order to obtain the rotation~l equations of

motion. Similarly, generic modal equations (See Appendix

30
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D) for the flexible mast modes are obtained for the SCOLE

system.

III.1. SCOLE System Geometry

Since the SCOLE system has three components with some
relative degrees of freedom, it takes at least four .
coordiﬁate systems to describe its geometry in its B
deformed state.

Let therefore, RO be an inertial frame centered at
the geocenter; Rl'(il, 31, E])’ a frame connected and
moving with the orbit with 31 parallel to the angular
momentum vector of the center of mass of the Shuttle and
with 11 directed along the positive orbit; R(;, 3, ﬁ), a
frame centered at G, mass center of the orbiter; R2(£2’
32, ﬂz) a frame moving with the reflector and centered at
G, its center of mass. (See Figure.III.l).

If Eb is the orbital angular velécity of the Shuttle,

then

~
-

won-woj (III-I)
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Let us assume the following Euler an;le sequence

-~ LN}

then.fzs/R , the inertial-angular velocity of the Orbiter

can be expressed as

At « ”

-> ~ . ‘
3 s/my = (8=ugd 3y +¥k 491 (1II.2)

~t

Since, k = ¢osy k + sinV¥ Jj and

A~

J; = sin¢ i + cos¢ cosV¥ j - cos ¢sinv k,

->
QS/R can be rewritten in the body frame as:

-»> - Y -~

= [(6'*’0) sin ¢ +u:]£ + [(é-mb) cos ¢ cos ¥ + ¢ sin ¢]3
+ ﬁ cos Y - (é-wo) cos ¢ sinvy ]i (II11.3)

The reflector is assumed.to be'rigidly connected to .

the beam, its angular velocity is that of the end, 01, of



33

the beam. The angular velocity, ESR/S’ of the reflector

with respect to the Shuttle can be expressed as

EER/S =dp 1+ 6p3; + dp Kk, (III.4)
where
b= d Fa(z)]),.
R dt 9z Iz -L
6 =d_ [2ulz8)] ), 1 (III.5)
R dt a2 _
and $ = d ¢(z,t)
Rdc- R |z=-L

u(z,t), v(z,t), and ¢ (z,t) are the infplane, the
out of plane, and the torsional bending mode shape
functions of‘the beam, respectively.

Assuming the following sequence in the beam motion

relative to the.orbiter:

i. Out of orbit plane bending;

ii. Bending in a plane parallel to the orbit plans;

iii. Torsion'about ko

the unit vectors in the intermediate coordinate systems

are expressed as:



34

-~

iz-cos op cos eRi+sin ¢ p cos ¢R3+sin ¢p sin y

“

rK

A

Jp = - sin ¢p o8 6p i+ (cos g cos yp -sin ¢ sinep siny R)f

+ (cos op sin Yp * sin@R sin 6p cos wR)k
'k2 = gin eRi - cos e_13 sin YR J + cos 6p Co8 yp k
These relations can be recast in the following matrix

format:

'

3

L ]
>
A

1, ]

2 = [Tg ol 3 (III.6)
k k
L2 |

in which the transformation matrix from the body frame, R,

to the frame connected to the reflector, R2’ has thé

following form:
oty coegy  singy costp sindy st

T [Sin% oo,  costy cosiy-aindy siacy sy Cip Sietndp sindy cost
sindy sty sty costy costy

h—
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Next, the rotational equations - of motion for the
system will be derived by taking the time derivative of
the angular momentum of the system at G, the center of
mass of the Shuttle, and by equating it to the external

torques applied to the system.

I1I1.2. Angular Momentum of the SCOLE System

III.A. Angular Momentum of the Shuttle About its
Mass Center, G.

The angular momentum of the Shuttle, taken as a rigid
body, about its center of mass, G is

->

Q
S/G  S/RO

->

Hgyg = 1

(III.7)

(See Appendix C for the inertia tensors of the different

components of the SCOLE system).
III.2.B. Angular Momentum of the Beam About G

Consider an element of mass, dm, 'of the beam located

at some point, P, such that (Figure III. 1)

>

GP =~ =T, +37 | (1II.8)

where Fb = -2k is the position vector of P in the

undeformed state; q (z,t) = u(z,t) i + v(z,t)jﬁin which, u
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and v are the x and y components of the mode shape vector

(Appendix A).

->
The angular momentum of dm about G, dHM/G is given

by:
o+ , | _
dH =Tx d () |, dm (III1.9)
M/G dt RO
where
T omo-zk + ul + vj © (III.10)

Equation (III.9) is expressed explicitly as:

-

= { (-z£+u£+v‘)x d («z;+u;+v‘3 } &m
— dr = _ C el p Y
_(cii_z;‘Ro -.&_t-l;QS{zx r = (u-sz-zny)1+(v+Qzu+zs'zx)j+(va-qu)k
0

After substituting the different terms into Equation

(III.10) the following expression results:

dHM/G - [[z(;+ﬂzu) + y(va-Qyu) --z2 Qxli

2

+[- z(ﬁ-?zv) + u(Qyu - ﬂxv) + Z_lei

+[&(v+ ﬁ; u5 - v(ﬁ-gzv) + z(uﬂx+v9y)]£}dm (III.11)
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where

u(z,t) = L p?(t) §" (z) and v(z,t) =) p" (t) S (z)
n b 4 n y

Considering only a single mode in the open loop situation,
to show the form of various volume integrations,
u = - Wgin (Wt+a) Sx(z) and v = - w sin (wt+Y) Sy(z).
Assuming small elastic displacements such that
84 SJ/L2 <<1 and dividing d;M/G by w, Lz, where wgyis the
Shuttle orbital angular velocity and L a reference length,
then,
-> ’ -
dHM/G/w0L2 ~ _;Li[(z§+zﬂzu+ szz)i +.( -zu

woL

2 \ ~ N ~
+szv+z Qy)j + (9, uz + Qyzv)k}p dz

where P is the mass per unit length of the beam. After
multiplying both sides of this equation by wO L2. there

results:

-~

dﬁM/G v [(z;+zu Qz+2291)i + (z&+zvﬂz+229y)j

+(zu9x+zv9y)k} P dz (II1.12)
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The total angular momentum of the mast about G is
obtained by integrating Equation (III.12) over the total
length of the mast.

-L

-> ->
HM/G - de/G (II1.13)
0 ->
The eight terms appearing in-dHM/G are integrated using

integral tables - e.g.
-L -L

jozé dom = —pwsin (WE+Y) j (AysinfziB, cosbziC, sinhfzD, coshéz) dz

0 0

= pwsin (wt+Y)[A,(=8inBL + L cosBL) + B, (L sinBL + cos8L - 1 )
2 - 2 = -7
B g 8

+ C2 (-L coshgL + singBL) + D2 (L sinhBL - cosh8L - 1 )

B 8 B 82 B2

To simplify the notations, let

£,(8) = [Ai L cosBL - sinBL) + B, (L sinBL + cos8L ;_l)

8 82 B B2 .82

+ C; (sinh8L - L coshBL) + D, (L sinhBL ~ coshfL + 1)}
P g G ' BT a2 T2

~ -
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After substitution of fi and M fcr o, where M = mass
L
H

of the mast, in the expression of M/G* °ne errives at:

-+ ' ~
HM/G - % {Flz cos (wt+¢)f1—lﬂsin (‘M:+Y)f2-9x L3/3]i

3 -

+[ w sin (wt+u)f1+ Qz cos (wq+f)f2-QyL 13

+[9 cos (utta)fy+ o cos (m-.-w)‘fz]i} (III.14)

III.2.C. Angular Momentum of the Reflector About, G

Since small deflections are nssumed for the beam, the
reflector can be assumed to be located at a constant
distance from G, the Shuttle mass center.

‘Using the transfer theorem for the angulaf momentum

.

(See Appendix B), the angular momentum, HR/G' of the

reflector, assumed rigid, about G can be expressed as:

-> - -> ->
- I Q + M, GG, x d_ (GG,)]| (III.15)
/6 = Trre, “R/Ry* Mg O x L (GGl
where IR/Gl' the inertia tensor of the reflector expressed
t G, 1 £ ) - ]
a 1» its center o masg, én R/Ro r/s* S’RO
f(respectively, the inertial angular velocity of the

reflector, its relative angular velocity with respect to

the Shuttle and the inertial angular velacity of the



40

OrBiter) are both expressed in the same coordinate system,
RZ' poving.with the 1eflector.

‘The inertial angular vclocity of the reflector is
expressed in R2 using the transformation matrix [Tij]R'*Rz

-~

-3 - . - )
Q R/Ro- {nx + wR) 'l'11 + Qy le +a, Tl3 + 8p sin @R}i2

+ {(S& + wR) ‘I'21 + Qy T22 + Q, T23 + 8p cos °R]jﬁ

+ ((s& + wR) T31 + Qy T32 +Q, T33 + ¢R}k2

- 2, 12' + 2,5, + 95 k, © (III.16)

Now, after rewriting the second term in Equation (III.15),
<> -> <> -> -> -
”Rccl"i-(col 11)"’”‘;0+O G x4 (G0y+0,6))p

dt R dt

vhere 01 is the reflector attachment point to the mast,

d @ =d (I PP N Y
rre! l“o S (Uota(LytH + WL, + Qg x (U wd +v)!

-(u-a L - n v)P + (§+ L + C ; + (Q v- Q “)klz-L

z=-1L Vzm-p*
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- >
d g : ba ° " "
EEEOIGIIRO =agjr * 0161 = (9 iptapdatagky) x (X i, + Y j))

= (nlY-921)12+ 25X j,- QY 1,
X, and Y are the "x" and "y" offset coordinates,

respectively.

After subsitution of the terms into Equation

(III.IS). one arrives at:

* -~ -~ -~
Hpsg =91 Ipy 15 + 99 Ipy Jy + 05 Ipg ky

+ Mp { (bL + e(v+Y))i-(altc(u+X))] + (b(u+D)-a(v4Y))k} (IIT.17)

IRI' IR2’ and IR3 are the principal moments of inertia of

the reflector.

a = (u- QyL =2, v- 2, T,,+X2,T +@,Y-2,5)T

1159379, 31}

b = [V+QxL +Qzu-523Y T12+ Q3X T22+621Y-92X)T32}

and

+ 9. XT

T T+ 83 X T,

¢ = {8 v-fu-1 3+ (%) T=8,00T55)



IIT.2.D. Angular Momentum of the System About G

. ->
The angular momentum of the system about G, Hsyst/G'
is given by the sum of the angular momentum of each of the

three components evaluated about the same point, G.

-

-+ - ->
Hoyst/c = Hg/g + Hyyg + Hy g

The unit vectors 12, fz, and Rz are transformed into unit

vectors along the Shuttle axes as follows:

~ ~

iz-cos¢R coseR 1 + sin¢ R cosz3 + sin¢ R sian k

3y = ~stnty cosy 1+ ety comy sty siney sto)] + (s stoggonopy
+cmnRsﬁmhﬁE |

~ N

k2 = sineR 1 - coseR simpR 3 + coseR cosyp k

After this substitution into Equation (III.17), the

angular momentum of the system is expressed as:
isyst/G = oy -0 L, +% [0, cos (stro)f) - sin (utw)E,

3 .
+a L°/3 1+ My (L +c(wy)) +2; Iy co8 9p co8 6p - 2y I, sindp cos6p

+Q3 IK3 s:'neR}i + (Qy ISz +_bé [wsin (wt+on1
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+ 9 cos (WtHYE, - QyL3/3 ] - My (el +e(@D} 8 T sin % cost

+0y Ly, (cos 6p cosyy, ~ singy sme'R singg) =05 Ly o8 6p sinyp)]
+lea I +a, Ig +%“-[nx 08 (ubto)f) +0_ cosGut+)E,)]

+M (M(wX) - a(wY)) +$21 IRl sin@R sin¥p
+2) T, (sing sing cosyy + cosy sink) + 2, T, cosdy costle (IIL18)
" or

> N - - :
H |«;-g£n+%;+dgk (III.19)

III.3. Rotational Equations of Motion (Torque free!.

The rotational equations of motion for the system,
when free of all external torques, are obtained as:

.
>

i % Q - o
( sy3t/G)IRo . = Hsyst/G/S + S/Rox Hsyst/G = 0 (III.20)

The vector equation (III.20) itself is equivalent to

Hx + Qy Hz - Qz Hy = 0

Hy + Qz Hx - Qx Hé = 0 (;II.ZI)

e

2 - -
z+\xHy Rnyo

Under the small angle approximation assumption, on
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IP,' 8, and ¢ (sin ovo 3 C€OS ogl) the torque free rotatiohal
equations of motion (III.21) for the SCOLE system, after

linearization are rewritten as:

i) The Roll Equation: Hx + Qy Hz - ﬂz Hy =0

(‘IJ-wo¢)IS1 - (¢+wo‘b)134 +% [(¢+ wO\P) cos (wt+m)f1
-m(q;+w0w) sin (wt+a) f1 - wz cos (wt:-lfy)f2 + (l;-woé)L3/3]
+ Grmug $+ Vpmugp)Tpy + wpdp Tpy = @34 ugiIg,
4 .« 2 ) . .
"'(“’04”""0@ (ISZ'ISS+IR2'IR3IR'1) +% [(wods—wdp) cos (W t+a)f1

+ 2 Li 2 8 " 2
+(m0¢»-w0¢) 3+ (wo -Zwo ) cos (wt+?Y) f2]+m0tpRIRz

~(4ge § + uofpIpy + WHHRLETe) + M (u 4 X) (G -a ¥
2 . . 2 2 .
+L(w0¢-w0w) - (wodrl-wow)u -X (mowR +uwye)
2 . R .« 2
+ab ¥R X] - MR(V + D[ (6- mo)u + (woe-mo)L
-w0¢+w(2)w) - w? 0, X]

0

+wgy ¢+ 'wgw) v+y (wgwR + U
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HLLY + (h=ugiL + X (=phugd + op +up o p)] + Mg ¥
My Y(T(h+ ¥y —upd=w o&) = X G+ep)) = 0 (III.22)

11) The Pitch Equation: fly +0, B - H =0
oI, + M- o? cos (ut4a)E) + (+ug) cos WL,
20@+ug¥) sin @EbY) £+ SL7/3 4 uy Gug®) cos Gter)(£,)]
+ (0-8) Tp, - ML [u ~(obp Jlm T (oo 4+ i)
uo 8 X1 = 2 Mp Xug i = My XY (b= by - )
M X2 (eri) M Y (i o) ugl= 0 (III.23)

1i1) The Yaw Equation: H, o B - H -'.o
~(vhuy §) Ig, + (b +ugi) .(133 + Ipa) +% [Gmugd) cos (utta) £,
~u( r'iz-m.b) sin (otia)E, +eos @I)E, <o(6—) sin @EDE, ] + M (D) [wyL -u fL

+;u+},ﬁﬁbu}mdﬁu+x woﬁ)R +<I>R+moi»+¢)] +MR;1[5+ (J:-wo¢) L+ (o +ug¥) u
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+ X (¢+ moww;{-i-mowk)] -MR(w-Y)[{i - 8L - ¢v -4 viu ¥ ug ¥ Vi o ¥ = ¥ (ubJ»R +

"’;1R+wo'i.‘-l- $) + ty XéR] -4 v[d - (o~ w'o)L

(v +ugop X = T (b +ught ug gt op)]

- (‘I’-% ‘i;)“b Iy +L4I_‘( ¥=wge) (cus-i;l (wtka)f; +“b"—‘: )
—ug (b=uge) Iy - M L (4=up ®) (8 +ug)

DL —agf + ug (o) Ig +ug (FHogd Ty,

+% [y ($+uwgy) cos (wt+ of) + (8= 4y “Ysin (@t +Y)E,)]
+ug( $-ught lgmg o) .IRI "“"«;% )

o W+ ¢+40¢) 1241 (%«»04- Gt ug + ) =uglvp

+00 + V(= ¥+ pduugh) +TX (o4 60} =0 (TL.24)

Equations (III.22 - III. 24) have been developed
under the assumption that only a single mast flexible mode

is excited.
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For multiple mode interaction, terms involving

cos (wt+a), sin (wt + a), etc. would be expanded to
include the effects of the multiple frequencies. Where u,
v and their derivatives ﬁppear explicitly, multiple wmodes

can be included by direct substitution.
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Reflector

(pitch)

Shuttle

A
Orbit ¢

(yaw).

%0

O Geoccenter

FIGURE III-1l: THE 3-D GEOMETRY OF THE SCOLE
' CONFIGURATION IN ITS DEFORMED STATE



CHAPTER FOUR

STABILITY OF THE SCOLE SYSTEM IN SOME OF ITS
CONFIGURATIONS

In Chapter TII, Equations (III.22), (I11.23), and
(III.24) describe the dvnamics of the orbiting SCOLE
configuration. In what follows, the stability analysis of
the SCOLE system will be conducted in three different
steps.

First, it will be assumed that the mast is rigid;
also that the interface point between the beam and th;
reflector is the reflector center of mass; second, still
assuming, the mast rigid, the interface point will be
offsef in the "x" difection; finally, a two dimensional

offset of the interface point will be introduced. The

.mast will still be assumed rigid. The system dynamics, in

all the aforementioned cases, includes the gravity -

gradient torques. (Appendix C)

IV. The SCOLE System Without Offset or Fexibilit!

In the absence of flexibility (fl-fZ' wR- WR-

. g -
R™ R"
éR = fp= o= o= G mumumymvavav=0), and in the absence of

offset in the location of the interface point (X=Y=0),.

-
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equations (III.22), (III.23), and (III.24) respectively,
can be rewritten in the presence of gravity gradient

torques as: (See Appendix C)

2

e 2
w[ISl + ML®/3 + ML

rRL™ + Igyl = olg, - wqgellg; - Ig, + Igq

I =T Tl ~ g9 g 0 g i - T Ty - Ty -1

-M L% + 3(Iy - I,)] = 0 | (IV.1)

BlIgy + Tpy + ML 2 4 ML2/3] 4 32 6 () - 1) + 3, =0 (IV.2)

2 2

It is seen that in such configuration, in the linear
range, the equation describing the pitch motion (Eéuation
IV.2) of the system decouples from the equations
describing the motion in the two remaining degrees of

freedom (Equations. (IV.l)and (IV.3)).
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IV.I.A. Stability Analysis
Equatiﬁn (IV.2) can be recast in the following form:

ehl - 9h2 + h3 = 0 (IV.4)

in whibh,

. 2 2
h1-182+IR2+MRL +%

' 2 2

The homogeneous part of Equation (IV.4) yields the

following solution:

st <t

.eh - Cle + Cze (IV.5)

where 5-Vh2/h1 = 0,00176 based on

nominal SC?LE
parameters

since for this configuration, h,/hy >.0, 8 (t) is

unstable. A particular solution to (IV.4) is obtained as:

0 = h3/h2 = 0.0012 (based on nominal SCOLE
P parameters) (IV.6)

The constants of integration, C1 and CZ’ are dctarhined

from the initial conditions as:
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e L ]
Cl-_o+—o and
2 28
c .:'_Q_ ﬁ
2 2 28
giving

st .90
a(t) = eh+ep-e 0 coshx= +=—sinhé t + h3/h2(1-cosh st) (IV.7)

In the absence of control, the system is seen to be

unstable in. its pitch degree of freedom.

Equations (IV.l) -and (IV.3) which have the following.

forms, respectively.
. : . i _
Vky + %k, ¥kg + 8k, - Vkg = 0 (Iv.8)

;nl + ;nz + &ns - ¢n, + yng = 0 (IV.9)

* 2 2 o | .

2
kymugllg)=Iga+IgatIp;~Ipa+Ip3ls ky=-u lgys

2 2 2.,

ny==Ig,i ny=Iga+Ipqi ng=uglIgy+Igy=Ig,+Ip,+Ig5-Ip,]
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2 , 2

can be recast in the foliowing state matrix format:

X = A X or

P.- - P . T
v 0 0 1 0 v
(IV.10)
¢ 0 0 0 1 ¢
vl |P2 P4 P P3 ¥
¢ “P6 P8 'PS "P7 ‘I’
L J - > -
1%27%2™ 1%27%2M 3 kyn,-k,n,
=(k,n, +k,n,) n;p,+n, nyP,0, NP,y
P, = - sy P = s P, = sy P.=
4 kln2 kznl 5 n, 6 n, 7 n,
(nlpa-n4)



54

Some of the eigenvalues of the state matrix, in this
subcase have positive real parts; based on the actual
SCOLE system parameters indicating instability in ‘the open

loop dynamics of the roll and yaw degrees of freedom.

IV, 2. The SCOLE System Without Flexibility but With
' Offset in the "X" Direction
The configuration analyzed in section (IV.1l) is
upgraded to the one considered here by letting X be
non-zero in the equations of motion (III.22) - (III.24)
and by setting all the flexibility terms and the "Y
. offset" equal to zero.

The equations of motion then become:
L] 2 2 .0. v‘
WlIgy#( ML7/3) HMpLoIp1] - ¢ (Tg,#MpXL) ~duIg) + Igg - Ig,

2 2 2
+IR1+IR3-IR2] -0, - 1¢ IS 4+MRXI.) -w OW[ IS3-I32-_P_§L_ +IR3

1 ? .
-IRZ-MRL2+3(I3-IZ')] -0 (IV.11)

8 [T (P D %2 1+3@a -1) + 31y M I O (IV.12)

. . 2 .
=V Ig HMpAL] + ¢ [Tgq+IpHMpXT] + wg[Ig ~To +Ig +Tp,
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2 2,
*Ipy-Ipgl- 0o ¢lIg ~Igo+Ip)~TpyteX"]

2
- wo w{a(I84+MRXL)} =0 (IV.13)

Again, it is seen that in this configuration, the
pitch equation, (Equation IV.IZ), decouples from the rbll,
(Equation (IV.II)) and yaw (Equation (IV. 13)) equations
and can be rewritten as:

. ? L] 1
ehl _ehz + h3 =0 (IV.14)
vhere, h, = I, +I. +M (X2+ L2)+ML2/3

A | S2""R2"R j

! ? L
hy, = %2(I; - 1)) and hy=302(Ig,+MpX L)

Here again, Hé/fl is a positive quantity. By analogy with

the previous configuration,
' ) g L | '
o(t) = 8p coshé t +—xrsinh &t + h3/h2‘1-cosh 5t) (Iv.15)

! L |
with 6§ = u hz/h1 = 0.00176 (based on SCOLE;
nominal parameters )
In the absence of control. it is seen that the pitch angle
is unbounded indicating an instablllty in that degree of

freedom.

i el g



56

A reasoning similar to the one previously done for
the case without offset, enables one to recast Equations

(IV.11) and (IV.13) in the following state matrix format:

1
X =AX or

[ .
) 0 0 1 0 v
$ [=] 0 0 0 1 ¢ (IV.16)
' ' ' .
p 2 P4 P 1 P 3 U]
. ' ' t ' .
¢ [P 6 P g =P s P
t 0 lkt { ] k' \
v k.n y 0 +k_ ' n
2
wvhere, p = ? ? ™7 Pp= ? % ? %; P3- ? T T ’
kyn,-nyk, kinymmiky kynpnyky
vt v ot 't v ' L
e Ny s L. s PR L0
P v f T 3> Pc= T s P - v
4 K on.-n.k > n ® n
172 2 2 2
v o v e '
' R, P, ' ’nlpa+n4
p7 = ] p8 = 1
n2 32

4 2 2 . '
ky = ISl+ %% +MRL _+IR1, kz"(ISA+MRXL )

1 1
2
ky = wollg tlga=TIgotIpy +Ipg=Tpals ky= wy(Tg,+MpXL);
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* 2 = 2 2 t ] .
? ] N 2
n, = -(184+MRXL): nZ-IS3+IR3+M§x

n. 5~ wolIgy+lg3~Tgo*Ip  +lpg-Tp,]

t

n,=w [151 s2* g1~ Tpy MR (X )] and

]

n5 - -”3{3(I54+MRXL)}’ Here again, some of the
eigenvalues of the state matrix have positive real parts.
Therefore, the open ioop dynamics of the éystem are seen
to be unstable in its roll and yaw degrees of freedom.
Iv. 3. The SCOLE System with Offset in Both the "X" and
Y" Directions but Without Flexibility
If once more the description of the system dynamics

is upgraded by introducing the "Y offset", the rotational

equations of motion become:

°* 2 2 2 . o *.

2 . 2
MY =I5+ gy HIpg=Tgg] = WpBMRYL - ¥ Ig To,+Ips-Tp,

2 .2 2 2
+Mp (Yo-L )-Em_, +3(T, -1 ) ]-wgel, - 3u, o,y
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2., ’
+u [MpY L + 31 ] = 0 (IV.17)

.s 2 . 2 2 . . ‘oo .
e[Iszf%L +IR2+MR(L +X°)] + ¢MRYL + wMRXY+mO¢ Mp XY

2 . 2
way+3moe(Ixx-;£z)

- ug My YL+ w2¢MRYL - 343

2
+3wOIxz = 0 (Iv.18)

ae . 2 2 .0 . °
HIga+Ipa#+Mp(X 4YT)] = v I +uy¥lIg +Igq=Tgo+Ip +Ipa=Ip,

2 .. . 2 2
+2MpYT] -8 MpYL - w eMRXY+3woerz-w0w(4Ix )

R z

2 ' 2 2 2 '
—w0¢[ISI-ISZ+IR1-IR2+MR(Y -X°)] - wOMRXY-O (Iv.19)

It should be noted here that the pitch equation no
longer decouples from the roll and yaw equations.
Equations (IV.17), (IV.18), and (IV.19) can be recast in

the following state matrix format



I = A X+ C or

K (0 o o 1 o o] [y
] o o0 o0 o0 1 0 0
H - 0o 0o o0 0 0 1 6
h a; a, a5 a, a5 ag "
® %7 % % 219 211 213 6
¢ %13 %14 %15 %16 217 18] | ¢

where, given
2
I -ISI+IR1+ML +MR(L +Y°); Ixy'MRXY

2 + 2
I SZ R2+ML +MR(L X*); I -I34 + MRXL

2
Izz-IS3+IR3+MR(x +Y°); Iyz-+MRYL

L ] MRXY
A1 'Ixz/Ixx’ AZ'E:;:" “b(Ixx zz Iyy)/I
L ] 2 .
Ay =ogfpYL/T 5 Agmbuwi(T T /I ;

2 ) 2 ] 200 w7 iam
Agmuy Lo/ Teys  Agmdog I /Ixx; Agmo((MpYLA3T )/T

59

0| (IV.20)
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Here A17A3, Bl-BBVhave been identified with primes in
order to avoid confusion with coefficients appearing in
the spatially dependent functions S, (z), sy(;) and ¢ (z)
appearing in the solutions to the partial differential

equations describing the vibrations of the mast, Appendix

A) .
) M_YL M_XY M_XY
R R R
Aq 5 A10™ T iAo 3 Ayp = 0
yy yy yy
M, YL 2 ) - 2201 -
A13-w% R H A14 3 0 Ixy/Iyy’ A15 3m0(Ix I )/Iyy;
yy
2 MRYL
A16-3m0'1xz/1yy’ A17 = Iz /Izz; A18 - Izz ?
MRXY
A19'“0 (Ixx + Izz - Iyy)/Izz ; A20 =% L ;
A, =30? I /T A .ebw? I /I
21 yz' "zz ° 22 xz' “zz.
Apamw2(I_ =T =+ I )/ ; A., =M. XY/I
23" %  txx * 824%%97R zz

Yy zz’/ “zz

' [] [ ) ] ] ) ] .
By=(Ag+Ay A1g)/(1-Ay Ay5); B==A; A;o/(1-A; Ayq);
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" 1 . v ' .
BymAg/(1-Ay Ajg)s Bu=(A,-A) Ay0)/(1-A; Ayq);

v, ' oy . ' R
Bgm(Ag+A1Ayy)/(1-A) Ap)5 By = (AghA] App)/(1-A) Ap,):
By=(Ag=Ay App)/(1-Ay A15)iBg = (A] Ay,-Ag)/(1-A; Agq);

A17);
Bpi==A11/(Ajo*Ag A17)s ByymAg Ayo/(Ajg+Ag Ag5);

Bra=(A14-Ag A7)/ (Ajg+hg A17)5 Byy=-(Ayg+hg Ayg/(A)o+hg

A7)

Bys=(Ag Ay;=A;15)/ (A1 g+Ag A17)s Bigm=(A g+Ag Ay, )/ (A g+Ag

A17)3
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ag= By aj5 + By;s 819 = By a5 + Bygs

a.= 213 = Bs Bis = B, Bis = By
7 1 ’ as - [ ’ ag - ]
B, - By B, - By B, ~ By
Bio * By B, - B, By - By
210" 7 S 3810 7 T
By - By B, - By B = By

813 = Ay 2 + Ajga; + Ay55 8y, = Aj; 8, + Ajgag - Ay
815 = Ay7 a3 + Ajg ag = Ajqi Ayg = Ay 8, + Ajg 8, - A
817 = Aj7 85+ Ajgay) - Ay agg = Ay, 8 + Ajg ag,

and ay;=(A17 819 + Ajg 350 + 4z,)

Since the Shuttle axes do not correspond to the
principal axes of the system, the system dynamics appear

in the following state form:
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X = AX + C (Iv.21)
indicating that the system equilibrium position‘is no
longer wo = 90 = ¢0 = 0.

Let yg» 6, and ¢, be the equilibrium position for

this configuration of the system. Then,

<o
]
=

V= Yo t and
T om
b= 4 *tmy end ey

De

o= ee+|-|2 and

The new state vector is [}u. ng» ng3» ﬁl, Ng» ﬁ3]T.

Also y , 6, and ¢e.satisfy

8) Ve * 8 6, *t 383 ¢, =-a;9
87 Yo * 8g6 6, + 39 ¢, =-35,

813 Ve * 214 0o * 315 ¢ =-2y)

this simultaneous system is solved using

[al = [A] [y, oy, og1%= [y, 6. 6,17 = [A™1] [a]
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¢e = - , 548552 rad.
9e = - , 019345 rad. based on nominal SCOLE parameters
4, = . 207672 rad.

For the open-loop dynamics of the non-linear model of
the SCOLE system, the enve;opes of the Euler angles are
'depicted in Figure IV.1, a; a function of time.

After substituting the new state vector in the
equations describing the system dynamics, linearizing them
about the new equilibrium position, recasting them into a
state format, one arrives at a system which can be cast in

the following form (where ai+é{8 are constants)

0 0 0 0 1 (Iv.22)

| *13 %14 %15 %16 %17 %18

The open loop system in this configuz+tion is also

unstable due to the unfavorable intertia distribution.
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CHAPTER FIVE

CONTROL SYNTHESIS
In this chapter, the different components for the
__two-stage control strategy which would slew the system as
if rigid and then damp.out the mast vibration will be
analyzed in the following manner:
. first, within the linear range, the motion of the
'rigiaI;;d SCOLE is controlled using a strategy, based on
the linear regulator problem when ﬁhe system is subjécted
to some small perturbations in its degrees of freedonm;
second, still within the linear range, the motion of
the actual SCOLE system, including its first four
'vibrational modes, is controlled using a control law based
again on the linear regulator theory whén.the system is
subjected to initial perturbations in its different
degrees of freedom.
third, the control strategy derived for the linear
model of the rigidized SCOLE is applied to the non;linear
model of the same configuration. Preliminary slew
maneuvers are tested by assuming single axis initial
perturbetions of 20° in che roll, pitch, and yaw degrees
of freedonm, respeétively. The three Shuttle torquers and

the two actuators on the reflector are then assumed to be

66
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the only sources of control moments. The controllers are

seen not to reach saturation.

V.1l. Control of the Rigidized SCOLE

During the control of this model, it is assumed that
the actuators located on the mast (proof masses) are not
activated. As a result, the system is controlled by means
of the Orbiter torquers and the actuators located on tﬁe
reflector (Figure I.1). |

Since the Shuttle is equipped with three torquers
acting about the X, ¥y, and z directions, the total control

torque available can be written as

> ) “~ -~
T-{Mx Ux + 130F vy) i+ (M Uy - 130 Fx vx)j

+ (Mz Uz + 32.5 Fx ve * 18.75 Fy vy) k) ft.-1b (V.1)

with the limits for M_, M_ and M_ = 10,000. ft. 1b; F
x y z - oTx

1

and Fy = 800 1%, The coﬁstraints, therefore, are

| <15 |v,] <15 and |v | <1

where U, the control vector is expressed as
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U = [vl, Voo Ul’ UZ’ U3]T, while the control'

influence matrix can then be written as:

- -

0 0 .0 0 0

0 0 0 0 0 (v.2)
B=loO 0 0 0 0

0 130Fy M_ 0 0

~130F 0 -0 My 0

32.5F 18.75Fy 0 0 . M,

L J

The optimal control ﬁ which minimizes a performance
index . . .

J = f (xTQx+uTRU) dt

0 | |
is given by
-1,T

U= ~-KX = -(R "B"P)X (v.3)

where P is the positive definite solution of the steady

state Ricatti matrix equationg.

The eduations describing the closed loop syséem can be

recast in the following matrix format:

i = AX + BU
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After substitution of -KX for U, the closed loop equation

can be rewritten as

X = (A-BE)X (V.4)

A parametric study was conducted by first examining
the variation of the real part of the least damped mode as
a functisn of different values for the (assumed) diagonal
Q and R weighting elements (Figures V.1 and V.2). 1In
this initial study, each of the diagonal Q elements were
assumed equal i.e. Qmdiag. [SQ] and also each of the
diagonal R elements were assumed equal R = diag. [SR].
Figure V.l.corregpondé to a model of the rigidized SCOLE
system where the dimensionality of the staté vector 1is 6
x 1 and 3 Shuttle torquers plus 2 reflector actuators
describe the control inputs. On the other hand, Figure
V.2 corresponds to the model of SCOLE including the first
four flexible mast modes. For this case the state vector
has dimensionality {4 x 1, and four additional control
actuators are assumed to be placed on the mast - two at

1/3 the total length and the remaining two at 2/3 the

total length (see Figure I.1).
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It can be seen from both Figures V.1 and V.2 that the
best closed-loop transient results .are obtained from using
larger valués of the state penalty along with smaller
values of the control penalty elements. Howéver, wheﬁ
the closed loop dynamic responses were simulated using the
best combinations -0of Q and R it was seen that some of the
controllers reached saturation levels for responses with
initial conditions on pitch, roll, and yaw taken within
the slewing angle range (i.e. approx. 0.3 rad.).

As an alternative, the concept of split weighting of
both the state and control penalty elements was
considered, initially for the rigidized SCOLE model.

Since the roll (and to some extent also the pitch) are
easier motions to excite than the yaw, due to the SCOLE
moment of inertia distribution, it seems intuitively
correct to relax the penalty of these control inputs as
contrasted Qith the remaining control penalty eleméﬁts.
Als§ since both position and rate feedback of the Shuttle
rotational motion will be utilized, it appears logical to
place a far greater penalty on the (angular) position
displacements. Based on this philosophy and by trial and
error, the set of Q and R which produced the largest

absolute value of the real part of the least damped mode
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(while at the same time avoiding saturation during 20°

single axis slewing maneuvers) was selected as

Q = diag.[5x1012, sx1012, sx10l2, 1, 1, 1]

and R = diag.[1, 1, .1, .2, 1]

For this set of Q and R thee closed log eigenvalues for

the rigidized SCOLE model are calculated

R(Ai) Im(ki)
-0.431436E+02 0.431436E+02
-0.431436E+02 -0.431436E+02
-0.132023E+03 0.132023E+03
-0.132023E+03 -0.132023E+03
-0.328320E+03 0.328320E+03
-0.328320E+03 - =-0.328320E+03

It has been éssumed here that all the state variables are
available at each instant (observability matrix = I6)

The closed loop dynamics has been simulated and
Figures (V.3), (V.4) and (V.5) show the transient
responses to a 6° initial perturbation in roll, pitch and
yaw, respectively. Figu-e V.3 shows that a 6°
perturbation in roll is damped ouf in‘apprdximately 13
seconds. During that single axis maneuver, it should also

be noticed that the coupling disturbs the yaw degree of
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freedom,which reaches a maximum amplitude of 0.25° degree.
Figure V.3a, V.3b, and V.3c show, for the 6° maneuver
about the roll éxis,the forces required from.thg reflector
actuators, the efforts.produced by the Shuttle's torquers,
and the components of the equivalent total torque acting
on the SCOLE system, respectively. The reflector "y"
actuator and the Shuttle's "x" torquer are the more active
controllers for this maneuvers, as expected.

Figures V.4 and V.5 show the response to 6° initial
perturbation in pitch and'yaw, respectively. During the
maneuver about the pitch axis, the yaw .angle is seen to be
-perturbed and reaches a maximum 1° ampiitude. The pitch
angle reaches the same amplitude in disturbance when the
maneuver about the yaw axis is undertaken. This confirms
the strong coupling between the pitch and yaw closed-loop
motions of SCOLE. The pitch maneuver takes about 48
seconds to stabilize while it takes the yaw maneuvér
almost two minutes to do so. This can be attributed to
the inertia distribution in this configuration of SCOLE on
the one hand, and to the shorter moment arms (offset
distances) available to the reflector actuators during a

maneuver about the yaw axis on the other. Where the

control efforts are as importanc: a factor in the selection
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of a control strategy as the response times are, this
control law could be chosen over the bang-bang approach.4
For the cases shown in Figures V.4 and V.5 the maximum
control effort from each controller is far below its
saturation levels.
V.2. Control of the Orbiting SCOLE with the First Fourﬁ

Modes Included

This model of the SCOLE is contruiled through thé
three torquers on the Shuttle and the six actuators
located by pairs at z = -L/3; z = -2L on the mast; and at
' Gl' the mass center of the\reflectoi (Figure I.1). The
"pairs of actuators are arranged in such a manner that one
acts along the x direction and the other in the y
direction., The actuators, when activated to provide
vibrgtion control to the mast, will develop torques about
the Orbiter center of'mass. Each actuator provides a

1

maximum of 800 1b~. force; the resulting torque

contributed by all six actuators is computed as

-

T, = FyL (vly/3+ 2 vzy/B + v3y) i-FL (vli/3 +
2v2x/3 +_v3x)j - (YFx Vay f XF»v3y)k
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This is added to the torques provided by the Shuttle's

- -~ ~ ~ -
three Forquers: T2 - Mx Ux i+ My Uy j+ Mz Uz k, to
yield the total available control torque for the system

as:

->
T = [Mx U, + Fy L (vly/3 + 2v /3 + 3y )]i [My y-

FxL(vl‘/B + 2v2x/3 + vy,)13 ¢+ [Mz U, + X F -Yv

y v3y 3x

Fx]k

After the substitution of the new state variables into the

generic modal equations, Appeadix D, there results:

(& SUC U TARITICL DT R MR
'Kﬁ;%1-§3q9 n3+(hK)%1-q&qg al*'&&121—QSQn-2%)qg 62
Kalan-chn-o-znb'Cn) ?13+Fx[ Vag 8 (L) + Vo, (-2_L)+v x (L /3)]

+F oy g (D 4wy s (D 4w s (-1/3)]

v '3y Sny
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with the control and global state vectors, respectively,

chosen as
U= [v, , v v v v v U.‘ u,, U ]T and
1x' "1ly* "2x’ "2y’ "3x°’ 3y’ "1°®* “2*' 73

O L U PV Ty N W

e, (o Jlc s Il [1< 1 md ]l 1.

Let t_ , and t__, n =1, 2, 3, 4, be functions such that
nx ny
tnx(z) = Fxsnx(z) and tny(z) - Fy sny(z), the control

influence matrix can be recast as B =



tlg(-l'/:s) tay('l-/3) t['x(‘z-/ 3) tay(‘z-/ 3) tax('L) t[“('L)
(V.5)

The linearized equations of motion describing the
rotational open-loop dynamics of the orbiting SCOLE
(modified form of Equations III.22 - III.24) are

Ml M - gLy - gy Ty =L+ ) - wyn, I

©O © O o © ©o o o

0 0 0 0 0 0 0
0 0 9 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 o 0

0 0 0 0 0 0 0
0 0 0 0 o 0 0
0 0 0 0 0 0 0
0 FL/3 0 Z1/3 0 FL M
F1/3 0 ZFL3 0 FL 0 0
0 0 0 0 -¥F, X, 0
013 5 (/3 5, A3 £ (A3 (L) L 0
(1) tEA) A3 5 (AR 6 ) ) 0
t(13) 3 (3) (A3 e (A/3) (L) L) 0
0

©O o o ©o o
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4 4 .
2 2 2
"lwonl(Iz-Iyy)-mon3In"3wonzIxy+ nzl Andln-nzl.Andm'f
4
Y A dy =0 (V.6)

n=1

nZI”-o- mM X+ naMp L - N wo ML +nq wgMp X - nIBm%Ixy

4 4
2 '2 e °
+N,w L +3nzw T . -I)+ A d - A =0 V.7
3 OMR 0 X zz) nzl n 4n n-z-l ndSn
and

N3l ny Tpm L tugny T =T o+ 1) = nyuw o MXY

4 4

2 2 2 N .

4me L o #3npw T -ngw (@ _-I )+ § Ad + } A
1 0 X 2 o V2 30 xx yy) n-lnﬁnn-l nd7§
g d&,
n=1 1

where, for the nth mode
M

[ ] 1 2 B g - - .
don = Mpoo(Y s, (-L))s dg = wg (T £,(8) MpXe, (-L);



dyn = B E106,) + (Tp, + Mplx? 4 L2])g (<L)

dg, = wgMpX(Le_(-L) + 20,,(-L)); g, = Mp(Xs (-L) -

| ] . 2
Yspx(-L))3 dg, = MpugXYe (-L); and dg = wy?¥s  (-L)
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Equations (V.6), (V.7), and (V.8) can be recast in a

matrix format as

[

. var
o
sz

p rA’ -y

" 1

" . . '

nz +[A2] A2 +[BJX {CJX = 0

N3 Ag

A,
. - d T
[}
with X' = [nl. Nys Mg, Al' Az. A3, A4]

MpXY . Tz ¢ 42
Iyy MRYL ;[AZJ- d41 d42.
ML I, de1 dg2

(V.9)
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B1=(8, Bl ;lgl =[c c)

and
N I B R
(2] |-ow 0 g sy g <
L“dlnﬁ%iﬂa) X 0 J fﬂ. dp  dn dMJ

- - T 0 ' 1
ad, |4 T ST SRS i | e

[a]=| s 1, 30 (LT 2 0 MK H- o 0o o0 o
T e o

From the generic modal equations, the expressions for

the different- Ai' (open-loop) can be expressed as follows:

4 A

A S LN Al
AR IR IR
Ay A4 M2 i)
A4 A, T3J Ny




80

with
2
iy 0 0 0
ﬁ) -.,,22 0 0
[Bz]- 0 0 2 0 and
-
: 3
0 0 0 mf
F'b _ j
F -y
€11 °12 €13 ®14 15 €16
€21 €22 ®23| 24 €25 26
[CyI="31 €32 33 "2]- ®34 €35 36
€41 €42 °43J €44 €45 €46

where wg is the frequency of vibration of the ith mode,

and

Cc)

e; = (a7 Bn - a, Cn - 2w n

oN o N

B )

n

es = (a9 %1 - a, Cn)

) ' 2
%5 = (a11 Bﬂ - ag Cn -2 vy D ) and

n
/

2
0 Q1)

e = (a12 Bn - ag ql + 2 w

C-o~
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After substitution for the open-loop A (i=l - 4),

Eqﬁation (V.9) can be rewritten in the following matrix
——format:

;1' -‘ o ~ fn .‘ -;1 i '.-

1 A 1 1 M

. n " .
tAy1]", +[A232] Ao tasCa1 |2 | +18gG1 |7, #1317,

] A3 "3 13 "3 ]
Aa‘

F ) .

A A A ]

Y n .
B, 4, +@1[", |+l Ayl =0

L ] . n

A3 ?J A3 (v.10)

bAl‘_J . -Al‘j '
which, when the global state vector is taken as: XT =
[nl’ n2) n3a A].’ sz A3v A4: nl’ n2. n3. Al’ sz A39 Aa]p

is equivalent to

2| = [ “‘1-1(‘2‘:2"‘"‘1') | 4708 2] - AII(Azcz“B'l) 47 Bl X

The new state matrix A, for the SCOLE system

therefore, is
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( (o] i [0] l; [13] 1;[0]

BTl h
g, '-A (A,B,+C, '): a7k, B, '% -A,7l8,
3x3 !4x3 ETEI ‘3

— ____“7__._ alintie __.T R
(G]  8,] : e’} o
3x4 4z f 3x4 | bxd J

Here again, the control U which minimizes the performance
index

J.= 5; (XTQX + UTRU) dt is oﬁtained after using the
0

ORACLS package to solve the steady state Riccati matrix
equation.9 Figure V.2 shows the same type of parametric
study previously conducted for the model of the rigidized
SCOLE. Since it is anticipated here that:large amplitude
slev maneuvers of the flexible SCOLE will be conducted |
based on the control strategy developed herein, the
concept of split weighting of both the state and control

penalty elements was considered. The criteria of
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selection being based on the control strategy capability
to slew the flexible SCOLE through large amplitude angies,
i.e. v, 6, and ¢ equal to 20° respectively without any
of the actuator reaching saturation levei.

It should be noted here that the state and control
influence aatrices have dimensionality of (14 x 14) and
(14 x 9), respectively.

The equations describing the closed-loop systenm,

X = AX +BU have been numerically integrated and the
corresponding mathematical model simulated for

Qutag. [5x10°, 5x10°, 5x10%, 5x10%, 5x10%, 5x10%, 5x10%, 10, 10,10,10,10, 10, 10]

and R as diag [10,10,10,10,10,10,1,1,1]

The transient responses to some initial
perturbations, depicted in Figures (V.6) - (V.17) éénfirm
the controllability of the flexible SCOLE system. During
the simulation of this model, the three attitude angles
(roll, pitch, and yaw) are each subjected to a 6° single
axis maneuve:r. For each case, the effects of such
displacements on the modal amplitudes of the first four

modes are shown {(Figures (V.6) through (V.11).
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The largest disturbance in the flexible modes, causéd
by the variation of an attitude angle is observed during
the roll axis maneuver,. the first mode is the most
excited; its amplitude doesn't exceed 0.13 ft. (0.1Z of
L). All the transients are damped out within 25 seconds.

This is due to the contribution of the additional 2
pairs of actuators located on the mast at z, = -L/3 and z
= -2L/3. During the 6° maneuver (from equilibrium) about
the roll axis,the reflector "y" axis actuator provides a
maximum of 210 1b. while the forces in the two "y"
actuators located a z = L/3 and z = -t/3. Teach 126 to
80 1b, respectively. The Shuttle "x" torquer provides a
maximum of 2800 ft. 1lb torque bringing to 52,500 ft. 1b
the maximum value of the x component of the composite
control torque required for this maneuver. ThHis, when
compared with the total maximum torque of (35,000 ft. 1lb)
required during tﬁe same maneuver of the rigidized ;odel
of SCOLE (figure V.3c), shows.an increase in the total
control torque of 50%Z. However the reflector "y"
actuator. when flexibility is included provides less of a
contribution than for the rigidized case.

It should pe noted here that because of the

additional pairs of actuators located or the mast, one can
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now.exploit the moment arms provided by the two reflector
actuators without the same risks of perturbing the pitch
or roll which exists for the rigidized model. The
actuators located oh the mast would help to prevent such
undesired displacements in pitch and roll.

In turn, each of the four flexible modes were given
an initial amplitude equal 1.0% of L, to stay within the
linear range, Figures (V.13), -(V.15), (V.17) and (V.19)
show the transient responses to those initial
displacements. .Also depicted is the result of intra-
flexible modél coupling. For this control strategy, the
disturbances in each of the flexible modes, for the
initial conditions considered herein, are damped in 15
seconds while their effects on the attitude angles take
almost 25 seconds to disappear (see Figure (V.12, (v.14),
(V.16), and (V.18)). The effects of the coupling between
the flexible and rigid rotational modes is best observed
in Figure.(V. 16) (roll response) wben the system is
initially excited in its third mode. The control effort
required here is simil+«r to that of Figures (V.6-V.11)

described above.
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v.3. Rigidized SCOLE Prelininarz‘SIew Maneuvers

In this section, the equations governing the motion
of the rigidized SCOLE, outside of the li-zear range, are
developed from the most general rotaéional equations of
motion'previously derived. The control laws obtained from

. the applicati?n of the linear regulator theory to the
linearized model of the rigidized SCOLE are tested for
large amplitude manuevers. The closed loop system
dynamics are numerically simulated. For single axis slew
maneuvers about the roll, pitch, and yaw axes,
respectively, the time responses for the Euler angles, the
control efforts required of the reflector actuatoré,
control torques demanded from the Shuttle's
torquers, and the components of the total control moments,
are depicted in the subsequent figures. This enables one
to determine the margin left in which to optimize the
control strategy without causing saturation of the ﬁ
controllers.

In the absence of flexibility in the system, Equation

-(III.18) becomes:

oo/ B sy =% # 0 LM MGt 4 e 4 9, L
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2 A
"“’y’sz”g'- 5 =M@l + eX) + @ Lo}

+(0 I -0 o + M (6K - al) + Qalm}f‘ (v.11)

where Qe Qy’ and Q, have been defined in Equation

(III.3). In the absence of flexibility, [T ] = [I,]
R, R2 3
which is equivalent to '1'11 = '1'22 = T33 = 1.0 and Tij = 0,
i * JO
" Under these new assumptions
Qlanx; Qz- Qy; and 93-
a = - QyL - QzY

b = @ L + QX and
x z

c = QxY - ny

Therefore, Equation (V.11) can be rewritten as
- 2 2, 2 :
H /G’ { Qx(IS1+IR1+% +MR(L + ))—le‘kXY—QZ(TSA-I-MQXL)}i
w0 (T2 + I, + M L2xD)- o M, XY + o MTL}]
P18 yUsatl + Igg + My x MR z MR

2,42 > )
+ {Q z (ISB+IR3+MR(X +17) + QXMRXL + QyMRYL}k =0 (V.12)



88

which can again be recast as:

~

* ~ ~
Hyyge/g = Hyl + B J + H_ k (V.13)

The equations governing the motion of the rigidized
SCOLE system during large amplitude maneuvers in the
presence of gravity gradient and control torques aré'

obtained as:

i) The Roll Equation

H - g H =T (V.14)

H + g H, - o H =T (V.15)

iii) The Yaw Equation

H + Q. H - o H_=T (V.16)

where Tx’ Ty, and Tz are the components of the external
torques acting on the system (including the control
torques previously derived for the linear model of the

rigidized SCOLE where the feedback now depends on the
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original Euler angles and their rates for maneuvers made
relative to the Shuttle roll, pitch, and yaw axes). |

The closed-loop system dynamics described by
Equations (V.14), (V.15), and (V.16) havé been numerically
simulated and the results are shown in Figures (V.20) to
(v.32).

Figures (V.20), (V.25), and (V.29) show the time
responses to an initial 20° alignment in roll, pitch, and
yaw degrees of freedom, respectively. It is seen that a
20 slew about the foll axis can be achieved in about 30
seéonds. The same'amplitude_maneuver about the pitch and
yaw take 45 and 100 seconds, respectively. This is due

to:

1. the system inertia distribution

2. with equal amounts of torques available in the
Shuttle for each maneuver, the roll and yaw
maneuvers benefit more from the actuators
located on the reflector for which the length of

the beam is then a moment arm.

For this control strategy, each of the single axis.
slew maneuvers about the roll and pitch axes used 85-90%

of the control forces available from the corresponding
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actuator located on the reflector, and 80% and 60%,
respecti#ely. of the control torque available from the
corresponding Shuttle torquer. None of the controllers
reach saturation. The control strategy which has been
designed so as to avoid an excessive use of the actuator
forces, relies mainly on the Shuttle's "z" torquer to slew
about the yaw axis. It is seen for this maneuver (Figure
V.31), that the corresponding Shuttle torquer is used at
992 of its maximum capacity. Also depicted in the Figures
(V.24), (V.28) and (V.32) are the components of the‘total
control moments for each case (moments of the reflector
control forces taken about the Shuttle's mass center, plus
ﬁoments of the Shuttle's torquers). This will make
possible a comparison between this strategy and other
future control laws which would be based on thé two point
boundary-value problem, where this or combinations of
control inputs may be employed.

fn conclusion, it is seen that a control strategr
derived from the linearized model of the rigidized SCOLE,
based on the linear regulator theory, works well when it
is used fo; single axis slew maneuvers through amplitude

angles as large. as 20°.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

In this thesis, it has been seen that:

1.

The SCOLE system, with gravity-gradient torques
included in its open-loop dynamics, is unstable.
This is due to the inertia distribution of the

system in the particular configuration where the

Shuttle roll axis nominally follows the orbit.

The equations describing the pitch motion
decouples, within the linear range, from the roll
and yaw equations, when the gravity-gradient
torques effects are present in the system
dynamics, and when the system is without offset
or Qhen the offset is parallel to the roll axis.
A result similar to the one depicted here was

derived for the tethered platform systemfll)

In the absence of control forces and torques, the
system will oscillate about a new equilibrium

positiecr. The amplitudes of the oscillations
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grow with the offset distance and the frequency
of oscillation during that motion depends on the
frequencies‘of the modes taken into account in

the model.

4. A control iaw judiciousiy derived for the linear
model of the rigidized SCOLE can be used to'hlew
the system without reaching the saturation level
of the controllers. It is anticipated that the
trade-off between maneuver time and overall
control effort would be in favor of such a
control law as compared with the bang-bang
strategy or the two point boundary value problem

approach.

5. The coupling between the elastic displacements
and the rigid modes is strong enough to suggest
more accuracy in modeling this class of offseted

and large flex*ble structures.

The author suggests the following topics for future

_recsearch.

1. In the case of the rigidized SCOLE model for

single orfset parallel to the -oll axis, the



128

equation describing the pitch motion of the rigid
SCOLE, decouples- from the roll and yaw motions.
In such case, a control law could be derived
analytically and compared with the control law
derived -using the linear regulator theory when a

maneuver is done about the pitch axis.

Since the SCOLE design challenge consists of
slewing the SCOLE configuration in a minimum time
through a 20° line of sight angle, it is
conceivable that the high rates at which the
slewing maneuvers occur would modify the
structural configuration of the system, at least
for those short periods of time the maneuvers
would take. Therefore, i study could be
conducted on a model which would include a load
equivalent to the effect of such induced -
centrifugal forces and the subsequent modal
shapes and frequencies could be compared with

those at hand at the present time. If signifi-

~ cant differences in modé.Snapes/frequengfes

during slew maneuvers are observed, then the

slewing simulations reported here for the
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rigidized model should be repeated and compared
both with the uncorrected and also with the

cofrected flexible models.

A study could be undertaken which would derive a
global control law compatible with the two-stage
strategy during which first the system would be

slewved as if-rigid and second the induced elastic

vibrations suppressed.
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APPENDIX A

STRUCTURAL ANALYSIS OF THE SCOLE SYSTEM

In this Appendix, the mode shape, the corresponding
frequencies, and modal amplitude are derived for the SCOLE
system. In this analysis, it is assumed that the beam
mast has:

a) a uniform density;

b) a circular cross section;

c) a uniform distribution of stiffness;

also that the displacements and slopes are small,

Governing Differential Eguationp

The governing partial differential equations for the
beam are comprised of two one plane bending equations,
(A.1 and A.2), and one axial toréion'equatidn. (A.3).

For the x-z plane bending, one has (7):

- azmx(z,c) < EL 4 ui,t)
3¢2 pA 4 ’ (A.1)

where o is the density of the beam, A its cross sectional
area and EI its x-z plane bending stiffness which is
assumed, in what follows, to be equal to its y-z plane

bending stiffness (ctrcular shaft)
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Assuming the following form for u(z,t) (separation of

variables):

u(z,t) = p (t)s _(2),

equation (A.l1) can be rewritten as

2 ' 4

" d I d
-s (z)— p (t) M — p ———— s (z) or
x dtz b3 PA "x dza >
.o s 4)
Px o _EI 5%
Py PA S,

This equation is true if, and only if both sides are

equal to a constant, say, -wz, yielding
L] 2 )
Pyt @ Py = 0

which integrates into:

px(t)- cos(mxt+a) where o is a phase angle. From the

right side,

s (8 _ ,2ea o _
X x EI X
Letting g %= 24 2
8 Bx " T %% . » the general solution has the

form:

sx'- Al'sianz + B1 cquxz + C1 sinhB <t D1 coshB <2

. 1 \ 1 ]
u(z,t) = cos (fuxt + a) {A1 sia 3xz + B1 cosB 2+ Clsn.nh sz + D1 costhz}
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The y-z plane bending is described by:

2 4
) EI 3
- =3 (v(z,t)) = == — (v(z,t))
ae? PA 5.4

(A.2)

Assuming v(z,t) of the form
v(z,t) = py(t) sy(z)

After substitution, Equation (A.2) becomes

EI $(4)

o
‘

-s ——
oy Py Toa Py %y 0OF
Py o _Er 3%
p PA ¢
y Y
which is true only if both
sides are equal to a constant say, - wzy. A reasoning

similar to the one used to analyze the x-z plane bending,

vyields
, - [ ' ] ° Bl
v(z,t) cos(wytﬂ) {Azs:lnB yz + B2 cos Byz + C2 sir!hB 7 z+ D2 cosh yz}

A 2
w
4

'4
where BY

O

1
(]

Finally, the z axis torsional bending is described by

(A.3)
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where G is the modulus of rigidity of the beam., Here
again, assuming the separation of the variables possible:
d (z,t) .= pz(t) 0 (z), and letting 3;2. “§ 0/G » there
results:

: '
¢(z,t) = cos (mzt +6) {A3 sin 8z +B 5 cos Bz}

The equations giving u (z,t), v(z,t),-and ¢ (z,t) are

- more convenient tq use when the position variable is
transformed into a nondimensional form. For this reason,
the variable, ¢= z/L, where L is the length of the

. undeformed beam, is used,A After substitution into

u(z,t), v(z,t), and ¢(z,t), those equations become:
u(e ,t)=cos (mxt+a) {AlsinB £ €t BlcosB < €+ Clsinhe < €F chosh By e}
v(e ,t)mcos( w ‘yt-f-y) {Azsin 3- y e+ Bzr:.z:»s.zBy e+ Czsinh 8 g€ + choshe ye}

¢ (e,t)mcos (@zt +96) {A3sin8 2+ 33c038 ze}

with, 3: - PA__ mz'L4

(EI)x X
4 PA 2 .4
= w
By (EI)y y L
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In this investigation it is assumed that W= W o=

w, and px(t) - py(t) = p,ft) = p(t)

B'Bx'8y=ﬁ BzL

2 or again
B --B—-E.I.
z L A

Boundary Conditions

In our model, the offset of the mast attachment point
from the center of mass of the reflector, along with its
products of inertia causes a kinematic coupling between
.the displacements in the different degrees of freedom.

The following relationships between shear, moment, and

beam displacement are used in the boundary conditions (3).

EI 3 (e,t) 33u(z,t)
Ve =" 33 = -k —
x L” 3¢ 3z
EI 83v (e, t) 3°v (z,t)
v - = T c—— ’ B - EI ’



Moo= - EI 3 \27 (e, t) -EI v
L e 9z
M = -EIu Bzv (e, t) 3211
y == — = -EI —; A
L de 9z
GI 30  (e,t)_ %
Mz TP € GIp z
where:

V_ = shear force in the x direction
V_ = shear force in the y direction

M M and Mz = moment componeuis about the x, y,

x’ y!

and z axes, reépectively.
Ip = polar moment of inertia of the bean,

"Let MS be the mass of the Shuttle and Mp that of the
reflector. The shear force at an end of the beam is
assumed equal to the mass of the correéponding body at
that end multiplied by the acceleration of that end; and
if we also consider that the displacement in the x

direction of a point located at z=0 is-given by
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u(O,t)-Dyo'P(O,t) and that in the y direction by
v(O,t)+on'i(0,t), (on and Dyo are the displacement
components of the centroid of .the cross sectiunal area of

the beam at z=0), therefore, at the Shuttle end,

Vo l=M_ b {s_(0)-Dy_ 8 (0)}= - EL s(3)(0yp(e)

5_0 s 3

EI

v I-Mpfs (0)-Dx, (0) --L—3

(3)
yiz s s y (0) p(t)

Taking into consideration the fact that B = _w2 p(t)

and substituting it into the shear equations yields

-o’M [ (0)-Dy 0(0)] = -EL &(3)(q)

L
-2 - - _EI 5(3)
M [s (0)-Dxy (0)] 3y O
but mz - B4 EL A
pAL

After rearranging terms, one obtains

s(3) Ms 4[

8 (o) FaT B'[ s _(0)-Dy,t{0)]
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(3) Ms 4. .
sy(O) = SAL 8 [sy(O)- Dx 8(0)1 )

A similar reasoning at the refle;tor end of the beanm
taking into account the equilibrium of the beam would give

- (3) M

R 4
s, (1) = SAL B [~ Sx(l) + Dy, 8(1)]
(3) My 4 '
Sy (1) = SAL B [~ Sy(l)-DxL 8 (1)]

Bending Moments

The next four boundary conditions involve the

moments, Mxo' M M and MyL' at z = 0 and z = L,

yo’ "xL’
respectively, on the beam. Assuming the nonlinear
coupling and all the products of inertia, except Ixz, to

be negligible, one may write

where ex and ey are the angular accelerations of a point

on the mast about the x and y axes, respectively,
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since Mx w- EL V(Z); My= E% u(2) from Equations (A),
L

e

and the angular displacements 6,s and ey are given as

@
<

. ’ -l 3u
; and Gy L 3¢

<D
[

[
(] (3]
u[
™

substitution of the general expréssions for u(e,t),v(e,t),
v(¢,t) and (e,t) into the boundary conditions (A and B)

at ¢ » 0 and ¢ = 1, respectively yields

4

(2) 8 (1), ..
s. (0) = —— (-I s (0))
y pAL3 Sl y .
P00y - _ﬁf_(-l s (1) (gy)
x pAL3 S2 X

(It should be recalled that the term Ix as applied to the

y
Shuttle is zero.)

2) 4 (D)
s, (1) = B I - M_DxD (D1
y , oAL3[ R1 sy R XUy sx ( )1
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(2) 4

s, (1) = _B ST

(1)
s (1)-M
pAL X

DxD s
y

R2

(L)
R y y

~where IS 1° IR i, Is 20 and IR o are the moments of

inertia, about the x and y axes, of the Shuttle and the

reflector, respectively. The x and y axes considered here

pass through the respective interface points.

Torsional Moments
These moments are caused by the masses and moments of
inertia, about the z axis, of the end bodies: ¢ (z,t) Izz’

They are countered by the beam internal moment given by

M = GI_ 3¢
2 P 3z
Writing the equality between these two moments yields:

at the Shuttle end

2 .
8.

(1) - z . 3® _

8°"7(0) LI Ig3 8 (DEQCI 57 = ¢(z,0)I,

z

~t the reflectur end

B2
4

,e(l)(i) - [-Tgge(1)+MpDx; s (1)-Mp Dy, s (1)]

pLI
2
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where IS3 and IR3 are the moments of inertia of the

Shuttle and the reflector, respectively, about the z axis.
_Substituting’the expression for sx(e), sy(e). and 8 ( ¢),

and the appropriate values of € at the boundaries into

the boundary equations, the'following ten linear

equations are obtained. It should also be noted here that

ﬁxo = Dy, =0 since at the Shuttle end the centroid of the

beam cross section coincides with the center of mass of

_ the Shuttle.

8M M
an. BMS
-Az -(m) BZ + C2 -(m) D2 = 0 (A.S)

A{BMR sin 8) B(BMR sin } + C f7R inh ‘
yv g= cosg) + B, 3L cos + sin } + l{m sin B-FoshB}
BM 8M BM

R R R
+D1[-37if coéhﬁsinhﬁ} + Aq( p—AI—.DyL sing } + B3[p—AL' Dy; cosg } = 0
(A.6)
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BM
Aﬂ sm asd-+§ﬂ-——-an&-dn&-+§ﬂ-——-sﬁmﬁcamm

"Dz{ mme}+A3(_ Dx, sing ]+B3[—mLoose}-o (A7) .

3 3

1 . B1

B8 “S1 Sl :
A, (&/=)-B, + C,(—=) +D,'= O _ (A.8)
2 3 2 2 pAL3 2

3 3

BTI B 1 BI .,

S2 S2 Sl

A, ( )=-B, + C,( ) 4D, - (—— {A,+C,} = O
1' pAL3 1 1 oAL3 1 pAL3 272

(83 MRDx gz) (AlcosB-BlsinB+ClcoshB+DlsinhB)
pAL

-A { Rlcase+sins} + B [ﬁ:le sinB-cosB)
pA

-C L__IRIcoshB+sinh8] - D, Lﬁ- Rl sinhs+cosh8} =0 (A.10)
pQL DAL

3
-A1[£;§R21c038+sin8} + Bl{ﬁggkz sinB-cosg}
PAL : PAL

+C {sinhB-BSI coshB} + Dl {coshB-~ B%%RZ sinhB)

R2
AL 0AL
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+ (83HR ) (A,cos B-B sin B+C,coshB+Dysinhg) = 0 (A.11)
°s A.12
Ayt (% 133) By = 0 (A.12)

(8 DgLIR) {Alsin3+B1cosB+ClsinhB+ choshe}

+(Bz ::IMR) {—Azsin8+ BzcosB— CzsinhB-choshB}
p

A La IR3 ainB + cosBz} - B (8 I 3coss +sing} = 0 (A.13)

Z
°LI. =5
PLlp P e

Equations (A.4) through (A.13) can be recast in the

following matrix format
[Z(B)]{[Alo Bl' Cl' Dlo sz Bzo Czt Dzv A3v B3]T}'[O]

where [Z(B)] is a 10 x 10 matrix whose entries are
functions of 8. Non zero solutions for Ai, Bi' Ci’ and Di
exist only when the determinant of [Z(B)] is zero.

The 2quations derived here being identical to those

derived in reference 3, the values of A Bi’ Ci’ and Di

il
obtained therein have been used (table A.1) and the
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projections of the first four mode shapes plotted: Figure

(A.1) through Figure (A.12).
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APPENDIX B

ANGULAR MOMENTUM OF A RIGID BODY
Transfer Theore-(ia)

Let B be a rigid body with its center of mass located

at point G and let I be some arbitrary point,

///”P(dm)

By definition, the angular momentum of B about the

¥
I G

point I is given by:

ﬁI - j;fp.x V(P)dm - (B.1)
’ _
.
where V (P) is the inertial velocity of the dm located at

point P.

- >
The vector IP can be rewritten as

-

IP = G + GP (B.2)

and V(P)=V(G) + &x &P (B.3)
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where V (G) is the inertial velocity of G and;ﬁ is the

inertial angular velocity of B.

-

-> ->
IP x V(P) can therefore be expanded as

IPx V(P) « 6 x ¥(G) + 16 x ( x 8P) + 8P x W(G) + &P x @x &) (B.4)

Each of the terms can be integrated as follows:

> -+ - > -+ >
S}G x V(G)dm = IG x V(G) J,dm = MIG x V(G)

M M
-V -+ -> -> ->
S‘GP x V(G)dm = =V(G) x SGPdm =0
M ' M

for, G is the mass center of the body B.
<> > - - - ) -
IG x (%xGP)dm = (IG xQ ) x GP dm =0
. M

because of the reason stated above

+ -

Let now GP = Xi + Yj + Zk

~

= Qxi + Qyj + uzk

A a a

(B.5)

(306)

(B.7)

' (B.8)

(B.9)

where i, j, k are any convenient reference axes fixed to

B,

> > >

GP x (9xGP) = |GP| 28 - (3.¢P)cP

(B.10)
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Equation (B.10) after substitution of Equations (B.8)

and (B.9) becomcs:
= - 2. ,2 s
GP x (%xGP) = [(Y“°+Z )9x - XYQy - X2 Qz] i
s [-112_ 4 (x%420)2_-zv0_ 1]
x y z

+ [-2X0 - Y20+ (x? 4+ Yz)nzjfc (B.11)

Because

2,2 .
(X +Y )dm = IZZ/G

g

XZdm = -IXY/G

=

Xde - —IZX/G

YZdm = -IYZ/G

x S/ z—

- y (x?+ Zz)df" - .IfY/c '

' 2 2
and Jr (Y + Z2%)dm = IXX/G
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it can now be seen that
GP x (§x 3P) dm = I GE (B.12)

which is the angular momentum of B about G. Gathering the

terms yields

>

- '_.' >
Hy = Hy + M IG x V(G) (B.13)
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APPENDIX C
- GRAVITY GRADIENT TORQdE ON THE SCOLE SYSTEM

In what follows here, the gravity gradient torques
will be derived for three different configurations of the
SCOLE system. In the development of the expression of the
gravity gradient torquesifor all three cases, it will be
assumed, without great loss of accuracy, that the center
of mass of the entire system coincides with that of the’
Shuttle Orbiter. Under that assumption, the unit vedtor.
a..defining the local vertical can be expressed in the
Shuttle body frame as the following functions of Euler's

angles (See Chapter III, Section 1).

A

a = sinfcos 81 - (cosesinw+sinesin¢cosw\} + (sinfsin¢siny-

cosecosw)i (C.1)

Expression for the Gravity Gradient Torque, N

L2 T -
N =3 vy 8 x I g @ (C.2)

-

where, wq is the Shuttle (zircular) orbital angular

velocity; Isyst/G’ the inert;a tensor of the system at its

"center of mass.
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Inertia Tensor of the SCOLE Components at their Mass

Centers
Isy 0 -Is,
~Ig, 0 Isa
i - |
ML 2 0 0
iz
;M/GM - 0 ML 2 q-
12
0 0 0
[ 1 0 0 ]
R1
IR/G = ‘ 0 Iro 0

The total tensor of inertia about G is the sum of the
inertia tensors of the components transferred at G using

the parallel axis theorem.
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SCOLE System Without Offset
F g

Isyst/G = 0 I 0
where I. = I + I + ML2 + M L2
1 S1 R1 = R
I, = Io, + I, + MLZ 4+ M2
2 S2 R2 -5 R

I3 = Igy + Ips and I, =Ig,

Under the assumption of small angle approximation for

the Euler angles, there results

->

N-3m2

0 (¥ (I3=I)i#[-I,-6(I,-I,) 1 5+I, vk}  (C.3)

SCOLE System with Offset in the "X" Direction

3 ' r
Isyst/G = 0 I 0
. ' '

4 ? 1
. . 2
with I1 = Il’ I 4= IA+MRXL : 12 = 12+MRX
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?
2

again

?i-swzo (¥(I; -I, )is[-I, -1, -I, )13+I, Vk)
(C.4)

Actual SCOLE Configuration in the Undeformed State

In the actual configuration, offset in both the "X"
and "Y" directions, the design challenge papercl)'provided

the inertia tensor of the whole system as

r - - -
Lex Iyx Iez
Isyst/G - 'Ixy Iyy "Iyz
T -Iyz L.z
which yields
- 2": . .
No= 36" (=T, +¥(I,,-T )+or Ii

+ [-Ixz+unyy-B(Ixx-I;z)]JA+(-erz+¢Ixz)lAc'j (c.5)
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APPENDIX D

Generic Mode Equations

Consider an elemental mass, dm, of the body whose
instantaneous position from the center of mass of the
. .
Shuttle is r. The equations of motion of dm can be

written as

adm = L(q) + fdm + edm (D.1)

where a is the inertial acceleration of dm; £, the

gravitational force per unit mass; e, the external force

per unit mass; ;, the elastic displacement of dm; and L,

a linear operator which, when applied to the small elastic

displacement q, yields the elastic forces acting on dm.
The gravitational force per unit mass, £, can be

expressed as (8):
f = £+ Mr (D.2)

wlare ?o is the 3ravitational force ber'unit mass at the
center of mass of the body considered and M, a matrix

operator.
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In what follows, the generic mode equations will be
derived based on a Newton-Euler formulation. The

principal assumptions made in this development are:

l. within each combonent of the system, the mass and
structural properties are uniformly distributed;
| 2. the material of each component is isotropic;
3. ﬁhe system is deformed in such a manner that it
experiences only sma}l strains (within the linear range).
4. the elastic displacements are small as compared
with the characteristic linear dimensions.of the system;
5. the natural mode shapes of free vibrationg of the
syétem are known a priori; |
6. the system is nominally earth pointing;
7. the system is considered to be clo;ed; no mass

transfer across its boundaries.

The vector equation (D.1) can be rewritten in the

frame moving with each bodf'as:

-‘[B":.m +T 4 Za 4 wxr + ux(@xr)] dm = L (q) + (Fre) dn - (D.3)

: - -
Note that r and r are the velocity and acceleration of dm
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as seen from the body fixed frame. The symbol u refers to

the inertial angular velocity of the body. The instantan-

eous position vector, r, of dm can be written as

T=r_+q - ' (D.4)

where ;; is the position of vector of dm with respect to
G, center of mass of the Shuttle, in the undeformed state;

and E 1s the elastic displacement of dm. Hence,

T=q and Ta=gq | (D.5)
For small amplitude elastic displacements, one can write q

as a superposition of the various modal contributions

according to

q = nZ.I AL(e) o (T) (D.6)
where An(t) - pn(t) = modal amplitude
-> ~ -~ FS
-~ and ¢n(r°) = an i+ Synj fen k (D.7)

The mod; shape ;n(ro) is associated with the
natural frequency, @ and satisfies the following

conditions:
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LI ¢n dm = smn Mn (D.8)

wh;re Mn is the generalized mass in the nth mode.

2 -
| L(¢n)-- w ¢ dm (D.9)
: j?n dm = _6 (D.10)
M -
and ‘f ;;x ¢n dm = 6 (D.11)
M

This here assumes that the fundamental stfuptural
frequency, W is much.grea:er than the orbital angular
velocity, @ = 0.0011 rad/s, and enables one to use, with
a high degree of accu:acy, the mode shape functions

corresponding to a non-rotating structure.

‘ {8)
Generic Mode Equations

The generic mode equations are obtained by taking the
modal components of all internal, external and inertial

forces acting on the system, i.e.,

+ 2uxr + Oxr + GOx(uxr)im =

a2
—
|

0

B
+
"

M
j ¢ . [L({{)/dm + £+ e]lanm (D.12)
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The various terms appearing in equation (D.12) can

now be expanded as follows:

3& . sEm dm = E;m . ‘( En dm = 0 (D.13)
M See Eq. (D.10). M

Vn .?@-an . Tdn = Sa;‘n L A7) da

M M . M
because of the result established in Equation (D.8),
[¢ .rdm-A M (D.14)
53‘“ (mer) dm = 2 S}'n . (T:x'xi) dm (D.15)
. (wxa dm = f (wxr ) do 4 )qu . @xq) dm (D.16)
) .

5311 . ox(@xt) do = Sﬂx . Ux(uﬁu-';) dm + S% cwx@xq) dm (D.17)

Yo M
- 2 ’

j%.L(q)/dmdm--mn ALM (.18)
. _

£'$n.fdm- §¢n.fodm+§$n.n(r)dm+§ . M(@dn (D.19)

- M M M

S¢n.edm-En (D.20)
M where En is the modal contribution of the external

forces (control forces) in the nth mode.
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After sﬁbstitution of the values for the. integrals
into Equation (D.12) and rearrangement of the terms, the
generic mode equations are obtained in vhe following form:

*0 2 m
¢ )
AL+ u A+ n/Mn + 2-1 mn/Mn

- [g, + m.z.l 8un * E, + D 1/M_ (D.21)
where
°n - 5;n . [(ero).+ wx(wxro)] dm (D.22)
M
e Y 25T + SxT + Tx(ox3] 4 D.23
. m = J}n : [2uxq + wxq + wx(wxq] m (D.23)
M
g8, = 5$n M(T ) dm (D.24)
I (o
o 8mn -j?bn M(T)dm (D.25)
4 ,
En = i%n . e dm (D.26)
and Dn = fd)n . F(‘: dm ' (D.27)
M

Because, in Appendix A, the SCOLE system was assumed

to be an unconstrained structure with end masses having
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inertia, the orthogonality conditions expressed in

Equations (D.10) and (D.1ll1) result in:

Dn - -ijsyst$'n' f0 dm =

-£- styst;n dn = 0

It is assumed here that the transverse displacements
are small as compared with the characteristic dimensions
of the system. In this first approximation analysis,
terms involving the integral of 3?; will be assumed small
as compared with terms involving 3'.;6 and, thus,

neglected. As a consequence of this
! ¢ = Y g a0 (D.28,
leaving

Ay vop A+ P/ = (g + E /M. (D.29)

Since the control forces consist of six actuators
lonz%ed in pairs at G 1’ the reflector mans center, and at
two points on the mast coffespdnding to z = -43.3 ft'and z

= -86.6 ft, "
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E_ = Man(sgn (<L) + s, (<L /3) + s (-2L/3))

+ MnFy(syn(-L) + syn(-L /3) + syn(-ZL/S))

¢ = g&n-[(rxi'-o + wx(@x ?o)] dm

n
M
-L
o . 2
mp { (syn Wz -uy smz)dz + (s U Z + S iy Y 2 +6 ﬂ”zz)dz
0 -L
2 2 2
- ]
(e J _+wz) a2 42
0

where Sen * Aln sin an + Bln cosBn z + Cln sinh an + Dln Cosh8 2

s ya = AZn sinsnz + an cos an + C2n sinthz + D2n costhz

? ?
and en - A3n sinB z + B3n cosB 2z

are the x, y- components of the mode shape vector and the angular

displacement of a point on the mast about the z axis, respectively

! 2 EI
with B = Bnq CA

¢n can be rewritten as
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-L

-L
0n = D{! (mx+mzmy) synz dz + J. (wzwx -W y) sxnz dz
0

A -L .
' 2 2
- f '(lux + wy) en 2 dz}
0 L
sin BnL L cos BnL
since 2sinB z dz = - + = £f_ (B.)
n“ BZ B 3 n
n
n
0
=L
g q cos BnL L sin BnL 1
zcos8 z dz = - =
n g2 * B, g2 £, (8
0 n n
) L cosh Bn L sinh Bn L
zsinhsnz; dz = - z + 5 = I:'5 (Bn)
n 8
n
and
L sinh Bn L cosh B L 1
zcoshB z dz = - a + = £ (B.)
n B . 2 2 6 n
n B g
n n
sin Bu L L cos Bn L . . .
%l'!9[(‘ Bz + 3 )[(mzmx—my)Aln+(wzmy+mx)A2n]
n
n
L sin BnL cos BnL-l .
+ ( Bn t 82 )_[(mz‘”x“Y)Bln+(‘“z“’y+""x)32n]

n
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sinh BnL L cosh BnL . .
+ ( B2 - Bn )[(mzwx-wy)cln+(wzwywx)CZn]

L sinh B L cosh 8 L-1
n n

+ ( 3 32 )[(m‘wa-wy)Dln+(wzwy+mx)Dln]
n n
1] t
L cos 8 L sin B L
n n 2 2
'( Bv - 3'2 )(‘ﬂx + wy)A3n
n, n,
L sin B L cos 8 L-1 .
n hed 2 2
-( B' + 8,2 )(mx + my)B3n
n n
or

M .
n [ ) (]
% = fr{fB(Bn) [0% Y% T wy) A1n + (wzwy +‘"x) A2n]
+ fa(Bn)[w W, o-w )B1n + @;zw y + wx)an] + fs(Bn) [wqux - w_) Cln

zx 'y y

+ @Jimy + wx)Czn] + f6(8)ﬁnzwx - wy) D1n+ anusy + u)x) DZn]
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*

2o u?) 1850885, + £,(8) By ]

—( wx

With the assumed Euler angle sequence, the gravity

gradient force matrix, Mo. can be derived as (8):

o 2 0 -1
M = wg Tl T2 B (T1 Tz)

where

- -

1 [
10 0 [as¢ sing O cos® 0 -gin6
'1'1- 0 cosy siny| |-€ing cos¢ O 0 1 0

0 -siny cosy 0 0 1 sing O c::seJ
L 1 L . 4 3 .
and
cosx -gin x 0.' cos X sin x 0
%r sin x cosx O T4{'qﬂnx cos x 0
0 0 1 0 0 1
1 0 0

- o 1 o
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cos $cos 9 . gin¢ -gin 6 cos¢
'&- simjsiné- cosy sin ¢pcos 6 cosycos ¢ cosysindgin 6 + sinycosd |

Siné sin ycos 6+ cosy gin & -ainycoséd anWan&dnwdn¢dneJ

Cos ¢ cos g sinysing- cosysingcos 9  sing sinycos 6+ cos y&in ¢
td? sin ¢ co8 ycos ¢ - - gin ycos ¢

-ging cos ¢ sinycos ¢+ cosysingsing - cosycos® - siny siné sin6

Assuming here the intrinsic frame(a) of reference to

coincide with thg orbit f;ame. i.e. x = 0.

e -

Mop My My, [0 zM 4

and MO(T )=, 2 | M M M 0 s, 2| zM
o)=uw3 | Mag 22 23 W, 23
May Mas Masg 2 L zMq4
\ d -

where M, = 30% (S8CBCHCY~ SZ0S4SyC §
Myq = 3«% [S6CoS (1-2C2p) + Sy C v (5%65% - C%)]
and My, = wg[-S(SctSeSw - cacy)? + 1)
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Therefore

-L
8, S‘E. M(ry) dm =p S (8,nZ M3 + S nZ My3 + 28, Myj) dz
M 0

M ’ :
n
8= T (f3 € p) (Apy Mg = Ay My3) + £4(8)) (Byy My + By M)

+£5(8)) (Cpp Myz + Cop Mog) + £4(8) (D) My5 + D, Myo)

' ' '
+£3(8)) Ay My3 + £, () By, Myy
the generic mode equations can be recast as:

hotug A+ £ gy, =Gy = M3) [E5(8DM, + £, (8) By, + 560G,

HEE) DT+ (g b =) (6 ) Ay +£,8 ) By +E B G,

¥ E(8) Dyl + 0ty -u? —uD) 18,8 ) Ay 48, (8 Byl -

Flso (L) +s GL) +ay ¢ ZPI+Efs (1) + L) + s, EE)]
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The scope of this study is limited to the stability
analysis of the SCOLE system and the derivation of a
control strategy for its motion about the nominal
equilibrium position as derived in Chapter IV, The
gravity-gradient forces acting on the system will be also
calculated in that configuration.

Thus, in what follows, the Euler angles ¢, 6, and¢
will be replaced by Npr Ngo and ) with ¢ = weq + ng o 8=
baq * N2 9= ¢

eq eq
terms appearing ian the generic mode equations, they can be

+ ng. After linearizing the different

rewritten, for each of the four modes included in this

study, as:

) ) 2 l .. 2
A+ w, A+ ‘TT(-( n, * 3“’0 ng) [f3(8n) Apn * £408y) Bin

+f5 (Bn> Cln+f6 (%) Dln] + (;1-2'”0;1? 4 w%nl) [f3(8n) A2u+flc <Bn) B2n
+E5(8) G+ £ () Dyl + 2y 7, [ £y (8) Ay + £, (8) By ]
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In Chapter V, these equations (n = 1, 2, 3, and 4)
yill be added to the equatibns describing the rotational
'motion‘of the SCOLE to obtain a mathematical model of the
SCdLE orbiting configuration. A modified version of

equations III.22 - III.24 will then be used.





